In _isr_wrapper, the interrupt ID read from the GIC is blindly used to
index into _sw_isr_table, which is only sized based on CONFIG_NUM_IRQ.
It is possible for both GICv2 and GICv3 to return 1023 for a handful
of scenarios, the simplest of which is a level sensitive interrupt
which has subsequently become de-asserted. Borrowing from the Linux
GIC implementation, a read that returns an interrupt ID of 1023 is
simply ignored.
Minor collateral changes to gic.h to group !_ASMLANGUAGE content
together to allow this header to be used in assembler files.
Signed-off-by: Luke Starrett <luke.starrett@gmail.com>
The page table implementation requires conversion between virtual
and physical addresses when creating and walking page tables. Add
a phys_addr() and virt_addr() functions instead of hard-casting
these values, plus a macro for doing the same in ASM code.
Currently, all pages are identity mapped so VIRT_OFFSET = 0, but
this will now still work if they are not the same.
ASM language was also updated for 32-bit. Comments were left in
64-bit, as long mode semantics don't allow use of Z_X86_PHYS_ADDR
macro; this can be revisited later.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
In native_posix and nrf52_bsim add the cpu_hold() function,
which can be used to emulate the time it takes for code
to execute.
It is very similar to arch_busy_wait(), but while
arch_busy_wait() returns when the requested time has passed,
cpu_hold() ensures that the time passes in the callers
context independently of how much time may pass in some
other context.
Signed-off-by: Alberto Escolar Piedras <alpi@oticon.com>
Fix compiler warnings associated with 'level' and 'entry' variables
'may be used uninitialized in this function'
Signed-off-by: Kumar Gala <kumar.gala@linaro.org>
The GIC interrupt controller driver is using a custom init function
called directly from the prep_c function. For consistency move that to
use SYS_INIT.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
This was reporting the wrong page tables for supervisor
threads with KPTI enabled.
Analysis of existing use of this API revealed no problems
caused by this issue, but someone may trip over it eventually.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
We now show:
- Data pages that are paged out in red
- Pages that are mapped but non-present due to KPTI,
respectively in cyan or blue if they are identity mapped
or not.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
With kernel page table isolation (KPTI) we cannot use right exception
stack since after using trampoline stack there was always switch to
7th IST stack (__x86_tss64_t_ist7_OFFSET). Make this configurable as a
parameter in EXCEPT(nr, ist) and EXCEPT_CODE(nr, ist). For the NMI we
would use ist6 (_nmi_stack).
Signed-off-by: Andrei Emeltchenko <andrei.emeltchenko@intel.com>
NMI can be triggered at any time, even when in the process of
switching stacks. Use special stack for it.
Signed-off-by: Andrei Emeltchenko <andrei.emeltchenko@intel.com>
range_map() now doesn't implicitly hold x86_mmu_lock, allowing
callers to use it if the lock is already held.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
- Remove SYS_ prefix
- shorten POWER_MANAGEMENT to just PM
- DEVICE_POWER_MANAGEMENT -> PM_DEVICE
and use PM_ as the prefix for all PM related Kconfigs
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
Provide the necessary adjustments to get MSI-X working (with or without
Intel VT-D).
Signed-off-by: Tomasz Bursztyka <tomasz.bursztyka@linux.intel.com>
This is part of Intel VT-D and how to discover capabilities, base
addresses and so on in order to start taking advantage from it.
There is a lot to get from there, but currently we are interested only
by getting the remapping hardware base address. And more specifically
for interrupt remapping usage.
There might be more than one of such hardware so the exposed function is
made to retrieve all of them.
Signed-off-by: Tomasz Bursztyka <tomasz.bursztyka@linux.intel.com>
This will be used by MSI multi-vector implementation to connect the irq
and the vector prior to allocation.
Signed-off-by: Tomasz Bursztyka <tomasz.bursztyka@linux.intel.com>
ARM64 is currently using SP_ELx as stack pointer for kernel and threads
because everything is running in EL1. If support for EL0 is required, it
is necessary to switch to use SP_EL0 instead, that is the only stack
pointer that can be accessed at all exception levels by threads.
While it is not required to keep using SP_EL0 also during the
exceptions, the current code implementation makes it easier to use the
same stack pointer as the one used by threads also during the
exceptions.
This patch moves the code from using SP_ELx to SP_EL0 and fill in the
missing entries in the vector table.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
This change adds full shared floating point support for the SPARC
architecture.
All SPARC floating point registers are scratch registers with respect
to function call boundaries. That means we only have to save floating
point registers when switching threads in ISR. The registers are
stored to the corresponding thread stack.
FPU is disabled when calling ISR. Any attempt to use FPU in ISR
will generate the fp_disabled trap which causes Zephyr fatal error.
- This commit adds no new thread state.
- All FPU contest save/restore is synchronous and lazy FPU context
switch is not implemented.
Signed-off-by: Martin Åberg <martin.aberg@gaisler.com>
With this change we allocate stack space only for the registers we
actually store in the thread interrupt stack frame.
Furthermore, no function is called on with the interrupt context save
frame %sp so no full frame is needed here. ABI functions are called
later in the interrupt trap handler, but that is after the dedicated
interrupt stack has been installed.
This saves 96 bytes of stack space for each interrupted context.
Signed-off-by: Martin Åberg <martin.aberg@gaisler.com>
The input registers (i0..i7) are not modified by the interrupt trap
handler and are preserved by function calls. So we do not need to
store them in the interrupt stack frame.
This saves 48 bytes of stack space for each interrupted context,
and eliminates 4 double word stores and 4 double word loads.
Signed-off-by: Martin Åberg <martin.aberg@gaisler.com>
This is important for when we will need to atomically
un-map a page and get its dirty state before the un-mapping
completed.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
On Cortex M7, we need to check the optional presence of
Lock Access Register (LAR) which is indicated in
Lock Status Register (LSR).
When present, a special access token must be written to unlock DWT
registers.
Signed-off-by: Alexandre Bourdiol <alexandre.bourdiol@st.com>
The 2K alignment assembler directives should be under
'SECTION_SUBSEC_FUNC(exc_vector_table,_vector_table_section,_vector_table)'
Otherwise the _vector_table is actually 0x80 bytes aligned.
Signed-off-by: Peng Fan <peng.fan@nxp.com>
Most of kernel files where declaring os module without providing
log level. Because of that default log level was used instead of
CONFIG_KERNEL_LOG_LEVEL.
Signed-off-by: Krzysztof Chruscinski <krzysztof.chruscinski@nordicsemi.no>
According to the PRMs of both ARC EM & ARC HS families on entry
to Fast IRQ handler ARC hardware saves PC (Program Counter) value
of where processor was right before jumping to the IRQ handler into
2 registers: ILINK & ERET.
But it turned out in case of ARC HS (at least in configuration with
Fast IRQs & 1 register bank) only ILINK was populated with the
previous PC, while in Zephyr we relied on what we read out of ERET.
That lead to funny issues when CPU returned from IRQ handling
to some unexpected location.
And now with that precious knowledge we're switching to return
address recovery from ILINK so that with both families of ARC
processors (EM & HS) we may get reliably good results.
The wrapper is few cycles shorter/faster as well, as we may shave off
another extra instruction for transferring ERET value from its AUX reg
to a scratch core register to be later stored in the memory.
+----+---------------+---------------+--------------+
| | FIRQ | RIRQ | RIRQ(Secure) |
+----+---------------+---------------+--------------+
| HS | ILINK=PC | ILINK=PC | NULL |
+----+---------------+---------------+--------------+
| EM | ILINK=ERET=PC | ILINK=ERET=PC | ILINK=PC |
+----+---------------+---------------+--------------+
Signed-off-by: Watson Zeng <zhiwei@synopsys.com>
Handle the difference of GNU & MWDT assembly for ARC-specific
code guarded by CONFIG_SMP define. That fixies SMP platforms build
with MWDT toolchain.
Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
currently pcie_get_mbar only returns the physical address.
This changes the function to return the size of the mbar and
the flags (IO Bar vs MEM BAR).
Signed-off-by: Maximilian Bachmann <m.bachmann@acontis.com>
Adds a new CONFIG_MPU which is set if an MPU is enabled. This
is a menuconfig will some MPU-specific options moved
under it.
MEMORY_PROTECTION and SRAM_REGION_PERMISSIONS have been merged.
This configuration depends on an MMU or MPU. The protection
test is updated accordingly.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
k_mem_partition is part of the CONFIG_USERSPACE abstraction,
but some older MPU code was depending on it even if user mode
isn't enabled. Use a new structure z_arm_mpu_partition instead,
which will insulate this code from any changes to the core
kernel definition of k_mem_partition.
The logic in z_arm_configure_dynamic_mpu_regions has been
adjusted to copy the necessary information out of the
memory domain instead of passing the addresses of the domain
structures directly to the lower-level MPU code.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>