Update the logic in a corner case, when the target comparator value is
one cycle ahead of the counter value.
Experiments have shown, that `set_comparator(cyc + 1);` might be not
enough in that case, and we still may (rarely) miss the interrupt.
This could happen when the counter incremented its value after the `dt`
variable was set. As we should set the comparator value two cycles
ahead to be on the safe side, increment the target comparator value
by 2 instead of 1.
Signed-off-by: Robert Lubos <robert.lubos@nordicsemi.no>
On some SoCs the frequency of the system clock is obtained at run time
as the exact configuration of the hardware is not known at compile time.
On such platforms using CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC define
directly introduces timing errors.
This commit replaces CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC by the call
to inline function sys_clock_hw_cycles_per_sec() which always returns
correct frequency of the system clock.
Signed-off-by: Piotr Zięcik <piotr.ziecik@nordicsemi.no>
When the tick rate was less than MIN_DELAY, bumping a "too soon"
expiration by just one tick may not be enough and we could
theoretically miss the counter.
Instead, eliminate the MIN_DELAY computation and write to the spec:
NRF guarantees that the RTC will generate an interrupt for a
comparator value two cycles in the future. And further, we can test
at the set point to see if we "just missed" the interrupt (i.e. zero
cycles delay) and flag a synchronous interrupt. So we only need to
miss a requested interrupt now for the special case of exactly one
cycle in the future, and then we're only late by one cycle. That's
optimal.
Also fixes an off-by-one in the next cycle computation. By API
convention, an ticks argument of one or less means "at the next tick"
and not "right now". So we need to add one to the target cycle to
avoid incorrectly triggering a synchronous interrupt. This was a
non-issue when a tick is longer than a hardware cycle but is needed
now.
Also handles the edge case with zero latency interrupts (which are
unmaskable) which might mess up timing. This was always a problem,
but we're more sensitive now and it's comparatively more likely to
occur.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
move clock_control.h to drivers/clock_control.h and
create a shim for backward-compatibility.
No functional changes to the headers.
A warning in the shim can be controlled with CONFIG_COMPAT_INCLUDES.
Related to #16539
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
Move internal and architecture specific headers from include/drivers to
subfolder for timer:
include/drivers/timer
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
Change code from using now deprecated DT_<COMPAT>_<INSTANCE>_<PROP>
defines to using DT_INST_<INSTANCE>_<COMPAT>_<PROP>.
Signed-off-by: Kumar Gala <kumar.gala@linaro.org>
Enabling the RTC event is intended to support peripheral-to-peripheral
interconnects, so introduces a request for HFCLK and PCLK16M when the
event is triggered. This specific event is never used with PPI so
enabling events apparently does nothing but increase power consumption.
Closes#15513
Signed-off-by: Peter A. Bigot <pab@pabigot.com>
Per #13610, recent changes to this driver seem to have introduced
unexpected latency regressions. This patch effectively reverts these
patches which changed the meat of the driver:
ac36886e62 drivers: nrf: timer: add inline qualifier where
inlining is intended
084363a0dc drivers: timer: nrf: refactor for speed and correctness
71882ff8c4 drivers: timer: nrf: drop unnecessary counter mask
4b24e88fa4 drivers: timer: nrf: use irq_lock instead of spinlock
While backporting these seemingly unrelated hygiene patches:
7cbdb6c5c0 drivers/timer: Restore non-tickless tick count behavior
d30c9aeafd drivers: nrf_power_clock: Migrate to DTS.
75f77db432 include: misc: util.h: Rename min/max to MIN/MAX
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Update reserved function names starting with one underscore, replacing
them as follows:
'_k_' with 'z_'
'_K_' with 'Z_'
'_handler_' with 'z_handl_'
'_Cstart' with 'z_cstart'
'_Swap' with 'z_swap'
This renaming is done on both global and those static function names
in kernel/include and include/. Other static function names in kernel/
are renamed by removing the leading underscore. Other function names
not starting with any prefix listed above are renamed starting with
a 'z_' or 'Z_' prefix.
Function names starting with two or three leading underscores are not
automatcally renamed since these names will collide with the variants
with two or three leading underscores.
Various generator scripts have also been updated as well as perf,
linker and usb files. These are
drivers/serial/uart_handlers.c
include/linker/kobject-text.ld
kernel/include/syscall_handler.h
scripts/gen_kobject_list.py
scripts/gen_syscall_header.py
Signed-off-by: Patrik Flykt <patrik.flykt@intel.com>
The newer series of timer drivers will compare counters vs. the last
tick boundary to compute a number of ticks to announce to the kernel.
In the case of CONFIG_TICKLESS=n, this actually represents a change of
behavior from our old scheme where "ticks" always reflected the number
of interrupts received.
The distinction only matters when an interrupt is delayed more than a
full tick, of course. But that actually makes a difference to some
timekeeping code. Restore the old behavior.
This also has the benefit of further reducing code size when !TICKLESS
and improving performance of the ISR by removing the division
(remember Cortex M0 has no hardware divide!).
Fixes#12409
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
There are issues using lowercase min and max macros when compiling a C++
application with a third-party toolchain such as GNU ARM Embedded when
using some STL headers i.e. <chrono>.
This is because there are actual C++ functions called min and max
defined in some of the STL headers and these macros interfere with them.
By changing the macros to UPPERCASE, which is consistent with almost all
other pre-processor macros this naming conflict is avoided.
All files that use these macros have been updated.
Signed-off-by: Carlos Stuart <carlosstuart1970@gmail.com>
Not necessary with gcc, and Zephyr is inconsistent about using the
qualifier, but making the intent explicit is a good thing.
Signed-off-by: Peter A. Bigot <pab@pabigot.com>
The existing implementation of z_clock_set_timeout() calculates the
compare value based on a complex series of operations including an
unconditional integer division and multiplication intended to ensure the
compare value is aligned to a tick boundary. On the nRF51 this division
requires a call to an outline function with a data-dependent execution
time.
In the common case where the timeout is set less than one tick past the
last observed tick the devision can be elided, as can several extra
operations intended to deal with fractional ticks.
The code also failed to account for a ticks-per-cycle that violated the
minimum delay required to guarantee a compare value would result in a
match without wrapping. The minimum delay was also unreasonably long
(about 1 ms). Reduce it to a more reasonable value to allow for a
higher ticks-per-second, and diagnose attempts to set the tick frequency
above the supported maximum (8192 Hz).
Finally, move the parts of the compare calculation that are not
dependent on the live counter value out of the locked region.
Prior to this change the observed time between the irq_lock() and
irq_unlock() in z_clock_set_timeout() on the nRF51 ranged between 5 us
and 8 us.
With the revised algorithm the observed lock duration is between 2.16 us
(1024 Hz) and 2.88 us (100 Hz) in the common case that the compare is
set within the current tick. If the compare is set late the duration
will be higher, but no greater than the previous implementation.
Signed-off-by: Peter A. Bigot <pab@pabigot.com>
The RTC COUNTER register doesn't care that it receives a value larger
than it can hold; it'll discard the bits internally. No need to spend
cycles doing it manually.
Signed-off-by: Peter A. Bigot <pab@pabigot.com>
spinlock gains us nothing on an architecture that doesn't support SMP.
Use the standard irq_lock() API so when we search for conditions that
may decrease ISR responsiveness we can find them.
Signed-off-by: Peter A. Bigot <pab@pabigot.com>
Minor adjustments are done to the nRF clock_control and rtc_timer
drivers to make them usable on nRF9160 as well.
The arm_irq_vector_table test code is modified only because it uses
the function that has been renamed in the nrf_rtc_timer driver.
Signed-off-by: Andrzej Głąbek <andrzej.glabek@nordicsemi.no>
This commit renames the nrf5_clock_control.h and
nrf5_clock_control.c files to nrf_clock_control.h and
nrf_clock_control.c, respectively, as they are used
in nRF9160 builds, as well.
Signed-off-by: Ioannis Glaropoulos <Ioannis.Glaropoulos@nordicsemi.no>
This commit renames the CLOCK_CONTROL_NRF5 Kconfig symbol to
CLOCK_CONTROL_NRF. The change is required to aleviates confusion
when selecting the symbol in nRF9160 SOC definition.
Signed-off-by: Ioannis Glaropoulos <Ioannis.Glaropoulos@nordicsemi.no>
Two subtractions failed to account for the possibility that a calculated
time exceeded the counter resolution, allowing a comparison to
improperly indicate that a minimum delay was satisfied.
Use the subtraction helper to avoid the problem.
(The subtraction in z_clock_set_timeout was the cause of issue #11694;
the one in rtc1_nrf5_isr was replaced based on inspection rather than
testing.)
Closes#11694
Signed-off-by: Peter A. Bigot <pab@pabigot.com>
Reworked using the older hardware interface code, but with an
implementation of the new API only. Much smaller & simpler.
As yet, tested (manually) only on a nrf52_pca10056 board.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
I was pretty careful, but these snuck in. Most of them are due to
overbroad string replacements in comments. The pull request is very
large, and I'm too lazy to find exactly where to back-merge all of
these.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Rename timer driver API functions to be consistent. ADD DOCS TO THE
HEADER so implementations understand what the requirements are.
Remove some unused functions that don't need declarations here.
Also removes the per-platform #if's around the power control callback
in favor of a weak-linked noop function in the driver initialization
(adds a few bytes of code to default platforms -- we'll live, I
think).
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
The existing API had two almost identical functions: _set_time() and
_timer_idle_enter(). Both simply instruct the timer driver to set the
next timer interrupt expiration appropriately so that the call to
z_clock_announce() will be made at the requested number of ticks. On
most/all hardware, these should be implementable identically.
Unfortunately because they are specified differently, existing drivers
have implemented them in parallel.
Specify a new, unified, z_clock_set_timeout(). Document it clearly
for implementors. And provide a shim layer for legacy drivers that
will continue to use the old functions.
Note that this patch fixes an existing bug found by inspection: the
old call to _set_time() out of z_clock_announce() failed to test for
the "wait forever" case in the situation where clock_always_on is
true, meaning that a system that reached this point and then never set
another timeout would freeze its uptime clock incorrectly.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
There were three separate "announce ticks" entry points exposed for
use by drivers. Unify them to just a single z_clock_announce()
function, making the "final" tick announcement the business of the
driver only, not the kernel.
Note the oddness with "_sys_idle_elapsed_ticks": this was a global
variable exposed by the kernel. But it was never actually used by the
kernel. It was updated and inspected only within the timer drivers,
and only so that it could be passed back to the kernel as the default
(actually hidden) argument to the announce function. Break this false
dependency by putting this variable into each timer driver
individually.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
The system tick count is a 64 bit quantity that gets updated from
interrupt context, meaning that it's dangerously non-atomic and has to
be locked. The core kernel clock code did this right.
But the value was also exposed to the rest of the universe as a global
variable, and virtually nothing else was doing this correctly. Even
in the timer ISRs themselves, the interrupts may be themselves
preempted (most of our architectures support nested interrupts) by
code that wants to set timeouts and inspect system uptime.
Define a z_tick_{get,set}() API, eliminate the old variable, and make
sure everyone uses the right mechanism.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
This was another "global variable" API. Give it function syntax too.
Also add a warning, because on nRF devices (at least) the cycle clock
runs in kHz and is too slow to give a precise answer here.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Define generic interface and hooks for tracing to replace
kernel_event_logger and existing tracing facilities with something more
common.
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
This commit removes redundant reads of RTC_COUNTER register
propagating optimizations made in the k_cycle_get_32() function.
Signed-off-by: Piotr Zięcik <piotr.ziecik@nordicsemi.no>
The previous implementation of _timer_cycle_get_32() (which is directly
mapped to k_cycle_get_32()) taken from 87 to 132 cycles. As result it
was too heavy for using it as source of time for logger.
This commit makes this function faster by removing redundant access
to the RTC register (each access consumed 28 CPU cycles) as well as
loop, which made this call non-deterministic.
After these changes the k_cycle_get_32() needs only 50-52 cycles
in to calculate 32-bit timestamp.
Signed-off-by: Piotr Zięcik <piotr.ziecik@nordicsemi.no>
In case of tickless kernel, k_busy_wait() calls __enable_sys_clock()
which in turn calls _set_time() with maximum RTC counter programmable
value. This will set the expected_sys_ticks to maximum tick value even
though there is no explicit timeout is requested from the kernel or from
an application. In this scenario, if an app calls k_sleep() which in
turn calls _add_timeout() which will adjust timeout value as per the
elapsed program time which based on incorrectly set expected_sys_ticks.
To fix this issue, we should not set the expected_sys_ticks in case
of __enable_sys_clock() as it just requests to run the counter but
a timeout event request.
Signed-off-by: Ramakrishna Pallala <ramakrishna.pallala@intel.com>
To enable for easier testing, replace direct use of registers
from Nordic's nrfx MDK with accesses via its HAL inlined functions
Signed-off-by: Alberto Escolar Piedras <alpi@oticon.com>
The nrf_rtc_timer used own method to calculate number of timer cycles
per tick. As the result value was different than the one used by
the kernel, the reported time was incorrect.
This commit fixes the problem described above by using global
sys_clock_hw_cycles_per_tick instead of custom RTC_TICKS_PER_SYS_TICK.
Signed-off-by: Piotr Zięcik <piotr.ziecik@nordicsemi.no>
Remove redundant declaration of youve_print. This probably
had been a review oversight and upstreamed.
Signed-off-by: Vinayak Kariappa Chettimada <vich@nordicsemi.no>
This commit exposes the RTC1 ISR handling function, so the
function can be directly used in tests which generate
customized vector tables manually and require a visible symbol
for the ISR function.
Signed-off-by: Ioannis Glaropoulos <Ioannis.Glaropoulos@nordicsemi.no>
nrf SOC uses nrf rtc timer (not sys tick), which is 32kHz,
whereas CPU runs at higher speed (nrf52 runs at 64MHz).
So 32Khz is too slow to measure critical kernel parameters.
This patch does :-
1. Add support for nrf SOC for timing_info benchmarking.
2. Uses SOC timer to measure kernel parameters.
Jira: ZEP-2314
Signed-off-by: Youvedeep Singh <youvedeep.singh@intel.com>
Add support for TICKLESS KERNEL in nrf_rtc_timer for Nordic family of
processors. This patch includes :-
1. Programming RTC based on "next timer" value from timeout queue while
A. exiting idle_exit.
B. on RTC interrupt.
2. Impliments some of functions which will be required by sys_clock and
scheduler.
ZEP-1819
Signed-off-by: Youvedeep Singh <youvedeep.singh@intel.com>
Fix nRF RTC timer from returning more than actual cycles
in _timer_cycle_get_32, under race condition when ISR
announces to kernel.
Jira: ZEP-2229
Signed-off-by: Vinayak Kariappa Chettimada <vich@nordicsemi.no>
Adds event based scheduling logic to the kernel. Updates
management of timeouts, timers, idling etc. based on
time tracked at events rather than periodic ticks. Provides
interfaces for timers to announce and get next timer expiry
based on kernel scheduling decisions involving time slicing
of threads, timeouts and idling. Uses wall time units instead
of ticks in all scheduling activities.
The implementation involves changes in the following areas
1. Management of time in wall units like ms/us instead of ticks
The existing implementation already had an option to configure
number of ticks in a second. The new implementation builds on
top of that feature and provides option to set the size of the
scheduling granurality to mili seconds or micro seconds. This
allows most of the current implementation to be reused. Due to
this re-use and co-existence with tick based kernel, the names
of variables may contain the word "tick". However, in the
tickless kernel implementation, it represents the currently
configured time unit, which would be be mili seconds or
micro seconds. The APIs that take time as a parameter are not
impacted and they continue to pass time in mili seconds.
2. Timers would not be programmed in periodic mode
generating ticks. Instead they would be programmed in one
shot mode to generate events at the time the kernel scheduler
needs to gain control for its scheduling activities like
timers, timeouts, time slicing, idling etc.
3. The scheduler provides interfaces that the timer drivers
use to announce elapsed time and get the next time the scheduler
needs a timer event. It is possible that the scheduler may not
need another timer event, in which case the system would wait
for a non-timer event to wake it up if it is idling.
4. New APIs are defined to be implemented by timer drivers. Also
they need to handler timer events differently. These changes
have been done in the HPET timer driver. In future other timers
that support tickles kernel should implement these APIs as well.
These APIs are to re-program the timer, update and announce
elapsed time.
5. Philosopher and timer_api applications have been enabled to
test tickless kernel. Separate configuration files are created
which define the necessary CONFIG flags. Run these apps using
following command
make pristine && make BOARD=qemu_x86 CONF_FILE=prj_tickless.conf qemu
Jira: ZEP-339 ZEP-1946 ZEP-948
Change-Id: I7d950c31bf1ff929a9066fad42c2f0559a2e5983
Signed-off-by: Ramesh Thomas <ramesh.thomas@intel.com>
Convert code to use u{8,16,32,64}_t and s{8,16,32,64}_t instead of C99
integer types. This handles the remaining includes and kernel, plus
touching up various points that we skipped because of include
dependancies. We also convert the PRI printf formatters in the arch
code over to normal formatters.
Jira: ZEP-2051
Change-Id: Iecbb12601a3ee4ea936fd7ddea37788a645b08b0
Signed-off-by: Kumar Gala <kumar.gala@linaro.org>
Convert code to use u{8,16,32,64}_t and s{8,16,32,64}_t instead of C99
integer types.
Jira: ZEP-2051
Change-Id: I08f51e2bfd475f6245771c1bd2df7ffc744c48c4
Signed-off-by: Kumar Gala <kumar.gala@linaro.org>
Clear pending IRQ when starting and restore back the RTC1 state when
disabling sys_clock, to avoid issues when soft rebooting the device or
chainloading another Zephyr image (e.g. mcuboot).
Change-Id: I693d9168196ad2cfb8475ecfa2051eac043b1fbd
Signed-off-by: Ricardo Salveti <ricardo.salveti@linaro.org>
Fixes an unlikely issue that could arise if the RTC handler in the nRF RTC
driver was blocked for more than one sys tick interval. This could lead to
_sys_clock_tick_announce() being called with more than one sys tick when the
kernel did not expect it.
Jira: ZEP-1763
Change-ID: I5608fca6f0ac97a17c1ce452c1c5c67696a49a9a
Signed-off-by: Øyvind Hovdsveen <oyvind.hovdsveen@nordicsemi.no>
This is a reworked version of the previous RTC driver. The main
changed is related to the handling _timer_idle_exit() on non-RTC
wake-ups. The previous version didn't announce the elapsed time
to the kernel in _timer_idle_exit(). Additionally, the driver now
makes sure never to announce more idle ticks than the kernel asked
for, since the kernel does not handle negative deltas in its timeout
queues.
Change-Id: I312a357a7ce8f0c22adf5153731064b92870e47e
Signed-off-by: Wojciech Bober <wojciech.bober@nordicsemi.no>
Signed-off-by: Øyvind Hovdsveen <oyvind.hovdsveen@nordicsemi.no>
Signed-off-by: Carles Cufi <carles.cufi@nordicsemi.no>
Some arches may want to define this as an inline function, or
define in core arch code instead of timer driver code.
Unfortunately, this means we need to remove from the footprint
tests, but this is not typically a large function.
Issue: ZEP-1546
Change-Id: Ic0d7a33507da855995838f4703d872cd613a2ca2
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Convert driver to use the CMSIS NVIC APIs rather than the internal ones
so we can remove them in the future.
Change-Id: I31c2f37bc0aa35668a441f4ef2821b768dd7b817
Signed-off-by: Kumar Gala <kumar.gala@linaro.org>