/* * Copyright (c) 2017 Linaro Limited * * SPDX-License-Identifier: Apache-2.0 */ /* libc headers */ #include /* Zephyr headers */ #include LOG_MODULE_REGISTER(net_sock, CONFIG_NET_SOCKETS_LOG_LEVEL); #include #include #include #include #include #include #include #include #include "sockets_internal.h" #define SET_ERRNO(x) \ { int _err = x; if (_err < 0) { errno = -_err; return -1; } } #define VTABLE_CALL(fn, sock, ...) \ do { \ const struct socket_op_vtable *vtable; \ void *ctx = get_sock_vtable(sock, &vtable); \ if (ctx == NULL || vtable->fn == NULL) { \ return -1; \ } \ return vtable->fn(ctx, __VA_ARGS__); \ } while (0) const struct socket_op_vtable sock_fd_op_vtable; static inline void *get_sock_vtable( int sock, const struct socket_op_vtable **vtable) { return z_get_fd_obj_and_vtable(sock, (const struct fd_op_vtable **)vtable); } static void zsock_received_cb(struct net_context *ctx, struct net_pkt *pkt, union net_ip_header *ip_hdr, union net_proto_header *proto_hdr, int status, void *user_data); static inline int k_fifo_wait_non_empty(struct k_fifo *fifo, int32_t timeout) { struct k_poll_event events[] = { K_POLL_EVENT_INITIALIZER(K_POLL_TYPE_FIFO_DATA_AVAILABLE, K_POLL_MODE_NOTIFY_ONLY, fifo), }; return k_poll(events, ARRAY_SIZE(events), timeout); } static void zsock_flush_queue(struct net_context *ctx) { bool is_listen = net_context_get_state(ctx) == NET_CONTEXT_LISTENING; void *p; /* recv_q and accept_q are shared via a union */ while ((p = k_fifo_get(&ctx->recv_q, K_NO_WAIT)) != NULL) { if (is_listen) { NET_DBG("discarding ctx %p", p); net_context_put(p); } else { NET_DBG("discarding pkt %p", p); net_pkt_unref(p); } } /* Some threads might be waiting on recv, cancel the wait */ k_fifo_cancel_wait(&ctx->recv_q); } int zsock_socket_internal(int family, int type, int proto) { int fd = z_reserve_fd(); struct net_context *ctx; int res; if (fd < 0) { return -1; } res = net_context_get(family, type, proto, &ctx); if (res < 0) { z_free_fd(fd); errno = -res; return -1; } /* Initialize user_data, all other calls will preserve it */ ctx->user_data = NULL; /* recv_q and accept_q are in union */ k_fifo_init(&ctx->recv_q); #ifdef CONFIG_USERSPACE /* Set net context object as initialized and grant access to the * calling thread (and only the calling thread) */ z_object_recycle(ctx); #endif /* TCP context is effectively owned by both application * and the stack: stack may detect that peer closed/aborted * connection, but it must not dispose of the context behind * the application back. Likewise, when application "closes" * context, it's not disposed of immediately - there's yet * closing handshake for stack to perform. */ if (proto == IPPROTO_TCP) { net_context_ref(ctx); } z_finalize_fd(fd, ctx, (const struct fd_op_vtable *)&sock_fd_op_vtable); NET_DBG("socket: ctx=%p, fd=%d", ctx, fd); return fd; } int z_impl_zsock_socket(int family, int type, int proto) { Z_STRUCT_SECTION_FOREACH(net_socket_register, sock_family) { if (sock_family->family != family && sock_family->family != AF_UNSPEC) { continue; } NET_ASSERT(sock_family->is_supported); if (!sock_family->is_supported(family, type, proto)) { continue; } return sock_family->handler(family, type, proto); } return zsock_socket_internal(family, type, proto); } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(zsock_socket, family, type, proto) { /* implementation call to net_context_get() should do all necessary * checking */ return z_impl_zsock_socket(family, type, proto); } #endif /* CONFIG_USERSPACE */ int zsock_close_ctx(struct net_context *ctx) { #ifdef CONFIG_USERSPACE z_object_uninit(ctx); #endif /* Reset callbacks to avoid any race conditions while * flushing queues. No need to check return values here, * as these are fail-free operations and we're closing * socket anyway. */ if (net_context_get_state(ctx) == NET_CONTEXT_LISTENING) { (void)net_context_accept(ctx, NULL, K_NO_WAIT, NULL); } else { (void)net_context_recv(ctx, NULL, K_NO_WAIT, NULL); } zsock_flush_queue(ctx); SET_ERRNO(net_context_put(ctx)); return 0; } int z_impl_zsock_close(int sock) { const struct fd_op_vtable *vtable; void *ctx = z_get_fd_obj_and_vtable(sock, &vtable); if (ctx == NULL) { return -1; } z_free_fd(sock); NET_DBG("close: ctx=%p, fd=%d", ctx, sock); return z_fdtable_call_ioctl(vtable, ctx, ZFD_IOCTL_CLOSE); } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(zsock_close, sock) { return z_impl_zsock_close(sock); } #endif /* CONFIG_USERSPACE */ int z_impl_zsock_shutdown(int sock, int how) { /* shutdown() is described by POSIX as just disabling recv() and/or * send() operations on socket. Of course, real-world software mostly * calls it for side effects. We treat it as null operation so far. */ ARG_UNUSED(sock); ARG_UNUSED(how); LOG_WRN("shutdown() not implemented"); return 0; } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(zsock_shutdown, sock, how) { return z_impl_zsock_shutdown(sock, how); } #endif /* CONFIG_USERSPACE */ static void zsock_accepted_cb(struct net_context *new_ctx, struct sockaddr *addr, socklen_t addrlen, int status, void *user_data) { struct net_context *parent = user_data; NET_DBG("parent=%p, ctx=%p, st=%d", parent, new_ctx, status); if (status == 0) { /* This just installs a callback, so cannot fail. */ (void)net_context_recv(new_ctx, zsock_received_cb, K_NO_WAIT, NULL); k_fifo_init(&new_ctx->recv_q); k_fifo_put(&parent->accept_q, new_ctx); } } static void zsock_received_cb(struct net_context *ctx, struct net_pkt *pkt, union net_ip_header *ip_hdr, union net_proto_header *proto_hdr, int status, void *user_data) { NET_DBG("ctx=%p, pkt=%p, st=%d, user_data=%p", ctx, pkt, status, user_data); /* if pkt is NULL, EOF */ if (!pkt) { struct net_pkt *last_pkt = k_fifo_peek_tail(&ctx->recv_q); if (!last_pkt) { /* If there're no packets in the queue, recv() may * be blocked waiting on it to become non-empty, * so cancel that wait. */ sock_set_eof(ctx); k_fifo_cancel_wait(&ctx->recv_q); NET_DBG("Marked socket %p as peer-closed", ctx); } else { net_pkt_set_eof(last_pkt, true); NET_DBG("Set EOF flag on pkt %p", last_pkt); } return; } /* Normal packet */ net_pkt_set_eof(pkt, false); if (net_context_get_type(ctx) == SOCK_STREAM) { net_context_update_recv_wnd(ctx, -net_pkt_remaining_data(pkt)); } k_fifo_put(&ctx->recv_q, pkt); } int zsock_bind_ctx(struct net_context *ctx, const struct sockaddr *addr, socklen_t addrlen) { SET_ERRNO(net_context_bind(ctx, addr, addrlen)); /* For DGRAM socket, we expect to receive packets after call to * bind(), but for STREAM socket, next expected operation is * listen(), which doesn't work if recv callback is set. */ if (net_context_get_type(ctx) == SOCK_DGRAM) { SET_ERRNO(net_context_recv(ctx, zsock_received_cb, K_NO_WAIT, ctx->user_data)); } return 0; } int z_impl_zsock_bind(int sock, const struct sockaddr *addr, socklen_t addrlen) { VTABLE_CALL(bind, sock, addr, addrlen); } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(zsock_bind, sock, addr, addrlen) { struct sockaddr_storage dest_addr_copy; Z_OOPS(Z_SYSCALL_VERIFY(addrlen <= sizeof(dest_addr_copy))); Z_OOPS(z_user_from_copy(&dest_addr_copy, (void *)addr, addrlen)); return z_impl_zsock_bind(sock, (struct sockaddr *)&dest_addr_copy, addrlen); } #endif /* CONFIG_USERSPACE */ int zsock_connect_ctx(struct net_context *ctx, const struct sockaddr *addr, socklen_t addrlen) { #if defined(CONFIG_SOCKS) if (net_context_is_proxy_enabled(ctx)) { SET_ERRNO(net_socks5_connect(ctx, addr, addrlen)); SET_ERRNO(net_context_recv(ctx, zsock_received_cb, K_NO_WAIT, ctx->user_data)); return 0; } #endif SET_ERRNO(net_context_connect(ctx, addr, addrlen, NULL, K_MSEC(CONFIG_NET_SOCKETS_CONNECT_TIMEOUT), NULL)); SET_ERRNO(net_context_recv(ctx, zsock_received_cb, K_NO_WAIT, ctx->user_data)); return 0; } int z_impl_zsock_connect(int sock, const struct sockaddr *addr, socklen_t addrlen) { VTABLE_CALL(connect, sock, addr, addrlen); } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(zsock_connect, sock, addr, addrlen) { struct sockaddr_storage dest_addr_copy; Z_OOPS(Z_SYSCALL_VERIFY(addrlen <= sizeof(dest_addr_copy))); Z_OOPS(z_user_from_copy(&dest_addr_copy, (void *)addr, addrlen)); return z_impl_zsock_connect(sock, (struct sockaddr *)&dest_addr_copy, addrlen); } #endif /* CONFIG_USERSPACE */ int zsock_listen_ctx(struct net_context *ctx, int backlog) { SET_ERRNO(net_context_listen(ctx, backlog)); SET_ERRNO(net_context_accept(ctx, zsock_accepted_cb, K_NO_WAIT, ctx)); return 0; } int z_impl_zsock_listen(int sock, int backlog) { VTABLE_CALL(listen, sock, backlog); } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(zsock_listen, sock, backlog) { return z_impl_zsock_listen(sock, backlog); } #endif /* CONFIG_USERSPACE */ int zsock_accept_ctx(struct net_context *parent, struct sockaddr *addr, socklen_t *addrlen) { int fd; fd = z_reserve_fd(); if (fd < 0) { return -1; } if (net_context_get_ip_proto(parent) == IPPROTO_TCP) { net_context_set_state(parent, NET_CONTEXT_LISTENING); } struct net_context *ctx = k_fifo_get(&parent->accept_q, K_FOREVER); #ifdef CONFIG_USERSPACE z_object_recycle(ctx); #endif if (addr != NULL && addrlen != NULL) { int len = MIN(*addrlen, sizeof(ctx->remote)); memcpy(addr, &ctx->remote, len); /* addrlen is a value-result argument, set to actual * size of source address */ if (ctx->remote.sa_family == AF_INET) { *addrlen = sizeof(struct sockaddr_in); } else if (ctx->remote.sa_family == AF_INET6) { *addrlen = sizeof(struct sockaddr_in6); } else { errno = ENOTSUP; return -1; } } /* TCP context is effectively owned by both application * and the stack: stack may detect that peer closed/aborted * connection, but it must not dispose of the context behind * the application back. Likewise, when application "closes" * context, it's not disposed of immediately - there's yet * closing handshake for stack to perform. */ net_context_ref(ctx); NET_DBG("accept: ctx=%p, fd=%d", ctx, fd); z_finalize_fd(fd, ctx, (const struct fd_op_vtable *)&sock_fd_op_vtable); return fd; } int z_impl_zsock_accept(int sock, struct sockaddr *addr, socklen_t *addrlen) { VTABLE_CALL(accept, sock, addr, addrlen); } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(zsock_accept, sock, addr, addrlen) { socklen_t addrlen_copy; int ret; Z_OOPS(z_user_from_copy(&addrlen_copy, (void *)addrlen, sizeof(socklen_t))); if (Z_SYSCALL_MEMORY_WRITE(addr, addrlen_copy)) { errno = EFAULT; return -1; } ret = z_impl_zsock_accept(sock, (struct sockaddr *)addr, &addrlen_copy); if (ret >= 0 && z_user_to_copy((void *)addrlen, &addrlen_copy, sizeof(socklen_t))) { errno = EINVAL; return -1; } return ret; } #endif /* CONFIG_USERSPACE */ ssize_t zsock_sendto_ctx(struct net_context *ctx, const void *buf, size_t len, int flags, const struct sockaddr *dest_addr, socklen_t addrlen) { s32_t timeout = K_FOREVER; int status; if ((flags & ZSOCK_MSG_DONTWAIT) || sock_is_nonblock(ctx)) { timeout = K_NO_WAIT; } /* Register the callback before sending in order to receive the response * from the peer. */ status = net_context_recv(ctx, zsock_received_cb, K_NO_WAIT, ctx->user_data); if (status < 0) { errno = -status; return -1; } if (dest_addr) { status = net_context_sendto(ctx, buf, len, dest_addr, addrlen, NULL, timeout, ctx->user_data); } else { status = net_context_send(ctx, buf, len, NULL, timeout, ctx->user_data); } if (status < 0) { errno = -status; return -1; } return status; } ssize_t z_impl_zsock_sendto(int sock, const void *buf, size_t len, int flags, const struct sockaddr *dest_addr, socklen_t addrlen) { VTABLE_CALL(sendto, sock, buf, len, flags, dest_addr, addrlen); } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(zsock_sendto, sock, buf, len, flags, dest_addr, addrlen) { struct sockaddr_storage dest_addr_copy; Z_OOPS(Z_SYSCALL_MEMORY_READ(buf, len)); if (dest_addr) { Z_OOPS(Z_SYSCALL_VERIFY(addrlen <= sizeof(dest_addr_copy))); Z_OOPS(z_user_from_copy(&dest_addr_copy, (void *)dest_addr, addrlen)); } return z_impl_zsock_sendto(sock, (const void *)buf, len, flags, dest_addr ? (struct sockaddr *)&dest_addr_copy : NULL, addrlen); } #endif /* CONFIG_USERSPACE */ ssize_t zsock_sendmsg_ctx(struct net_context *ctx, const struct msghdr *msg, int flags) { s32_t timeout = K_FOREVER; int status; if ((flags & ZSOCK_MSG_DONTWAIT) || sock_is_nonblock(ctx)) { timeout = K_NO_WAIT; } status = net_context_sendmsg(ctx, msg, flags, NULL, timeout, NULL); if (status < 0) { errno = -status; return -1; } return status; } ssize_t z_impl_zsock_sendmsg(int sock, const struct msghdr *msg, int flags) { VTABLE_CALL(sendmsg, sock, msg, flags); } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(zsock_sendmsg, sock, msg, flags) { /* TODO: Create a copy of msg_buf and copy the data there */ return z_impl_zsock_sendmsg(sock, (const struct msghdr *)msg, flags); } #endif /* CONFIG_USERSPACE */ static int sock_get_pkt_src_addr(struct net_pkt *pkt, enum net_ip_protocol proto, struct sockaddr *addr, socklen_t addrlen) { int ret = 0; struct net_pkt_cursor backup; u16_t *port; if (!addr || !pkt) { return -EINVAL; } net_pkt_cursor_backup(pkt, &backup); net_pkt_cursor_init(pkt); addr->sa_family = net_pkt_family(pkt); if (IS_ENABLED(CONFIG_NET_IPV4) && net_pkt_family(pkt) == AF_INET) { NET_PKT_DATA_ACCESS_CONTIGUOUS_DEFINE(ipv4_access, struct net_ipv4_hdr); struct sockaddr_in *addr4 = net_sin(addr); struct net_ipv4_hdr *ipv4_hdr; if (addrlen < sizeof(struct sockaddr_in)) { ret = -EINVAL; goto error; } ipv4_hdr = (struct net_ipv4_hdr *)net_pkt_get_data( pkt, &ipv4_access); if (!ipv4_hdr || net_pkt_acknowledge_data(pkt, &ipv4_access)) { ret = -ENOBUFS; goto error; } net_ipaddr_copy(&addr4->sin_addr, &ipv4_hdr->src); port = &addr4->sin_port; } else if (IS_ENABLED(CONFIG_NET_IPV6) && net_pkt_family(pkt) == AF_INET6) { NET_PKT_DATA_ACCESS_CONTIGUOUS_DEFINE(ipv6_access, struct net_ipv6_hdr); struct sockaddr_in6 *addr6 = net_sin6(addr); struct net_ipv6_hdr *ipv6_hdr; if (addrlen < sizeof(struct sockaddr_in6)) { ret = -EINVAL; goto error; } ipv6_hdr = (struct net_ipv6_hdr *)net_pkt_get_data( pkt, &ipv6_access); if (!ipv6_hdr || net_pkt_acknowledge_data(pkt, &ipv6_access) || net_pkt_skip(pkt, net_pkt_ipv6_ext_len(pkt))) { ret = -ENOBUFS; goto error; } net_ipaddr_copy(&addr6->sin6_addr, &ipv6_hdr->src); port = &addr6->sin6_port; } else { ret = -ENOTSUP; goto error; } if (IS_ENABLED(CONFIG_NET_UDP) && proto == IPPROTO_UDP) { NET_PKT_DATA_ACCESS_DEFINE(udp_access, struct net_udp_hdr); struct net_udp_hdr *udp_hdr; udp_hdr = (struct net_udp_hdr *)net_pkt_get_data(pkt, &udp_access); if (!udp_hdr) { ret = -ENOBUFS; goto error; } *port = udp_hdr->src_port; } else if (IS_ENABLED(CONFIG_NET_TCP) && proto == IPPROTO_TCP) { NET_PKT_DATA_ACCESS_DEFINE(tcp_access, struct net_tcp_hdr); struct net_tcp_hdr *tcp_hdr; tcp_hdr = (struct net_tcp_hdr *)net_pkt_get_data(pkt, &tcp_access); if (!tcp_hdr) { ret = -ENOBUFS; goto error; } *port = tcp_hdr->src_port; } else { ret = -ENOTSUP; } error: net_pkt_cursor_restore(pkt, &backup); return ret; } static inline ssize_t zsock_recv_dgram(struct net_context *ctx, void *buf, size_t max_len, int flags, struct sockaddr *src_addr, socklen_t *addrlen) { s32_t timeout = K_FOREVER; size_t recv_len = 0; struct net_pkt_cursor backup; struct net_pkt *pkt; if ((flags & ZSOCK_MSG_DONTWAIT) || sock_is_nonblock(ctx)) { timeout = K_NO_WAIT; } if (flags & ZSOCK_MSG_PEEK) { int res; res = k_fifo_wait_non_empty(&ctx->recv_q, timeout); /* EAGAIN when timeout expired, EINTR when cancelled */ if (res && res != -EAGAIN && res != -EINTR) { errno = -res; return -1; } pkt = k_fifo_peek_head(&ctx->recv_q); } else { pkt = k_fifo_get(&ctx->recv_q, timeout); } if (!pkt) { errno = EAGAIN; return -1; } net_pkt_cursor_backup(pkt, &backup); if (src_addr && addrlen) { int rv; rv = sock_get_pkt_src_addr(pkt, net_context_get_ip_proto(ctx), src_addr, *addrlen); if (rv < 0) { errno = -rv; return -1; } /* addrlen is a value-result argument, set to actual * size of source address */ if (src_addr->sa_family == AF_INET) { *addrlen = sizeof(struct sockaddr_in); } else if (src_addr->sa_family == AF_INET6) { *addrlen = sizeof(struct sockaddr_in6); } else { errno = ENOTSUP; return -1; } } recv_len = net_pkt_remaining_data(pkt); if (recv_len > max_len) { recv_len = max_len; } if (net_pkt_read(pkt, buf, recv_len)) { errno = ENOBUFS; return -1; } if (!(flags & ZSOCK_MSG_PEEK)) { net_pkt_unref(pkt); } else { net_pkt_cursor_restore(pkt, &backup); } return recv_len; } static inline ssize_t zsock_recv_stream(struct net_context *ctx, void *buf, size_t max_len, int flags) { s32_t timeout = K_FOREVER; size_t recv_len = 0; struct net_pkt_cursor backup; int res; if (!net_context_is_used(ctx)) { errno = EBADF; return -1; } if ((flags & ZSOCK_MSG_DONTWAIT) || sock_is_nonblock(ctx)) { timeout = K_NO_WAIT; } do { struct net_pkt *pkt; size_t data_len; if (sock_is_eof(ctx)) { return 0; } res = k_fifo_wait_non_empty(&ctx->recv_q, timeout); /* EAGAIN when timeout expired, EINTR when cancelled */ if (res && res != -EAGAIN && res != -EINTR) { errno = -res; return -1; } pkt = k_fifo_peek_head(&ctx->recv_q); if (!pkt) { /* Either timeout expired, or wait was cancelled * due to connection closure by peer. */ NET_DBG("NULL return from fifo"); if (sock_is_eof(ctx)) { return 0; } else { errno = EAGAIN; return -1; } } net_pkt_cursor_backup(pkt, &backup); data_len = net_pkt_remaining_data(pkt); recv_len = data_len; if (recv_len > max_len) { recv_len = max_len; } /* Actually copy data to application buffer */ if (net_pkt_read(pkt, buf, recv_len)) { errno = ENOBUFS; return -1; } if (!(flags & ZSOCK_MSG_PEEK)) { if (recv_len == data_len) { /* Finished processing head pkt in * the fifo. Drop it from there. */ k_fifo_get(&ctx->recv_q, K_NO_WAIT); if (net_pkt_eof(pkt)) { sock_set_eof(ctx); } net_pkt_unref(pkt); } } else { net_pkt_cursor_restore(pkt, &backup); } } while (recv_len == 0); if (!(flags & ZSOCK_MSG_PEEK)) { net_context_update_recv_wnd(ctx, recv_len); } return recv_len; } ssize_t zsock_recvfrom_ctx(struct net_context *ctx, void *buf, size_t max_len, int flags, struct sockaddr *src_addr, socklen_t *addrlen) { enum net_sock_type sock_type = net_context_get_type(ctx); if (max_len == 0) { return 0; } if (sock_type == SOCK_DGRAM) { return zsock_recv_dgram(ctx, buf, max_len, flags, src_addr, addrlen); } else if (sock_type == SOCK_STREAM) { return zsock_recv_stream(ctx, buf, max_len, flags); } else { __ASSERT(0, "Unknown socket type"); } return 0; } ssize_t z_impl_zsock_recvfrom(int sock, void *buf, size_t max_len, int flags, struct sockaddr *src_addr, socklen_t *addrlen) { VTABLE_CALL(recvfrom, sock, buf, max_len, flags, src_addr, addrlen); } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(zsock_recvfrom, sock, buf, max_len, flags, src_addr, addrlen_param) { socklen_t addrlen_copy; socklen_t *addrlen_ptr = (socklen_t *)addrlen_param; ssize_t ret; if (Z_SYSCALL_MEMORY_WRITE(buf, max_len)) { errno = EFAULT; return -1; } if (addrlen_param) { Z_OOPS(z_user_from_copy(&addrlen_copy, (socklen_t *)addrlen_param, sizeof(socklen_t))); } Z_OOPS(src_addr && Z_SYSCALL_MEMORY_WRITE(src_addr, addrlen_copy)); ret = z_impl_zsock_recvfrom(sock, (void *)buf, max_len, flags, (struct sockaddr *)src_addr, addrlen_param ? &addrlen_copy : NULL); if (addrlen_param) { Z_OOPS(z_user_to_copy(addrlen_ptr, &addrlen_copy, sizeof(socklen_t))); } return ret; } #endif /* CONFIG_USERSPACE */ /* As this is limited function, we don't follow POSIX signature, with * "..." instead of last arg. */ int z_impl_zsock_fcntl(int sock, int cmd, int flags) { const struct fd_op_vtable *vtable; void *obj; obj = z_get_fd_obj_and_vtable(sock, &vtable); if (obj == NULL) { return -1; } return z_fdtable_call_ioctl(vtable, obj, cmd, flags); } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(zsock_fcntl, sock, cmd, flags) { return z_impl_zsock_fcntl(sock, cmd, flags); } #endif static int zsock_poll_prepare_ctx(struct net_context *ctx, struct zsock_pollfd *pfd, struct k_poll_event **pev, struct k_poll_event *pev_end) { if (pfd->events & ZSOCK_POLLIN) { if (*pev == pev_end) { errno = ENOMEM; return -1; } (*pev)->obj = &ctx->recv_q; (*pev)->type = K_POLL_TYPE_FIFO_DATA_AVAILABLE; (*pev)->mode = K_POLL_MODE_NOTIFY_ONLY; (*pev)->state = K_POLL_STATE_NOT_READY; (*pev)++; } /* If socket is already in EOF, it can be reported * immediately, so we tell poll() to short-circuit wait. */ if (sock_is_eof(ctx)) { errno = EALREADY; return -1; } return 0; } static int zsock_poll_update_ctx(struct net_context *ctx, struct zsock_pollfd *pfd, struct k_poll_event **pev) { ARG_UNUSED(ctx); /* For now, assume that socket is always writable */ if (pfd->events & ZSOCK_POLLOUT) { pfd->revents |= ZSOCK_POLLOUT; } if (pfd->events & ZSOCK_POLLIN) { if ((*pev)->state != K_POLL_STATE_NOT_READY || sock_is_eof(ctx)) { pfd->revents |= ZSOCK_POLLIN; } (*pev)++; } return 0; } static inline int time_left(u32_t start, u32_t timeout) { u32_t elapsed = k_uptime_get_32() - start; return timeout - elapsed; } int z_impl_zsock_poll(struct zsock_pollfd *fds, int nfds, int timeout) { bool retry; int ret = 0; int i, remaining_time; struct zsock_pollfd *pfd; struct k_poll_event poll_events[CONFIG_NET_SOCKETS_POLL_MAX]; struct k_poll_event *pev; struct k_poll_event *pev_end = poll_events + ARRAY_SIZE(poll_events); const struct fd_op_vtable *vtable; u32_t entry_time = k_uptime_get_32(); if (timeout < 0) { timeout = K_FOREVER; } pev = poll_events; for (pfd = fds, i = nfds; i--; pfd++) { struct net_context *ctx; /* Per POSIX, negative fd's are just ignored */ if (pfd->fd < 0) { continue; } ctx = z_get_fd_obj_and_vtable(pfd->fd, &vtable); if (ctx == NULL) { /* Will set POLLNVAL in return loop */ continue; } if (z_fdtable_call_ioctl(vtable, ctx, ZFD_IOCTL_POLL_PREPARE, pfd, &pev, pev_end) < 0) { /* If POLL_PREPARE returned with EALREADY, it means * it already detected that some socket is ready. In * this case, we still perform a k_poll to pick up * as many events as possible, but without any wait. * TODO: optimize, use ret value, instead of setting * errno. */ if (errno == EALREADY) { timeout = K_NO_WAIT; continue; } return -1; } } remaining_time = timeout; do { ret = k_poll(poll_events, pev - poll_events, remaining_time); /* EAGAIN when timeout expired, EINTR when cancelled (i.e. EOF) */ if (ret != 0 && ret != -EAGAIN && ret != -EINTR) { errno = -ret; return -1; } retry = false; ret = 0; pev = poll_events; for (pfd = fds, i = nfds; i--; pfd++) { struct net_context *ctx; pfd->revents = 0; if (pfd->fd < 0) { continue; } ctx = z_get_fd_obj_and_vtable(pfd->fd, &vtable); if (ctx == NULL) { pfd->revents = ZSOCK_POLLNVAL; ret++; continue; } if (z_fdtable_call_ioctl(vtable, ctx, ZFD_IOCTL_POLL_UPDATE, pfd, &pev) < 0) { if (errno == EAGAIN) { retry = true; continue; } return -1; } if (pfd->revents != 0) { ret++; } } if (retry) { if (ret > 0) { break; } if (timeout == K_NO_WAIT) { break; } if (timeout != K_FOREVER) { /* Recalculate the timeout value. */ remaining_time = time_left(entry_time, timeout); if (remaining_time <= 0) { break; } } } } while (retry); return ret; } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(zsock_poll, fds, nfds, timeout) { struct zsock_pollfd *fds_copy; size_t fds_size; int ret; /* Copy fds array from user mode */ if (size_mul_overflow(nfds, sizeof(struct zsock_pollfd), &fds_size)) { errno = EFAULT; return -1; } fds_copy = z_user_alloc_from_copy((void *)fds, fds_size); if (!fds_copy) { errno = ENOMEM; return -1; } ret = z_impl_zsock_poll(fds_copy, nfds, timeout); if (ret >= 0) { z_user_to_copy((void *)fds, fds_copy, fds_size); } k_free(fds_copy); return ret; } #endif int z_impl_zsock_inet_pton(sa_family_t family, const char *src, void *dst) { if (net_addr_pton(family, src, dst) == 0) { return 1; } else { return 0; } } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(zsock_inet_pton, family, src, dst) { int dst_size; char src_copy[NET_IPV6_ADDR_LEN]; char dst_copy[sizeof(struct in6_addr)]; int ret; switch (family) { case AF_INET: dst_size = sizeof(struct in_addr); break; case AF_INET6: dst_size = sizeof(struct in6_addr); break; default: errno = EAFNOSUPPORT; return -1; } Z_OOPS(z_user_string_copy(src_copy, (char *)src, sizeof(src_copy))); ret = z_impl_zsock_inet_pton(family, src_copy, dst_copy); Z_OOPS(z_user_to_copy((void *)dst, dst_copy, dst_size)); return ret; } #endif int zsock_getsockopt_ctx(struct net_context *ctx, int level, int optname, void *optval, socklen_t *optlen) { int ret; switch (level) { case SOL_SOCKET: switch (optname) { case SO_TXTIME: if (IS_ENABLED(CONFIG_NET_CONTEXT_TXTIME)) { ret = net_context_get_option(ctx, NET_OPT_TXTIME, optval, optlen); if (ret < 0) { errno = -ret; return -1; } return 0; } } break; } errno = ENOPROTOOPT; return -1; } int z_impl_zsock_getsockopt(int sock, int level, int optname, void *optval, socklen_t *optlen) { VTABLE_CALL(getsockopt, sock, level, optname, optval, optlen); } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(zsock_getsockopt, sock, level, optname, optval, optlen) { socklen_t kernel_optlen = *(socklen_t *)optlen; void *kernel_optval; int ret; if (Z_SYSCALL_MEMORY_WRITE(optval, kernel_optlen)) { errno = -EPERM; return -1; } kernel_optval = z_user_alloc_from_copy((const void *)optval, kernel_optlen); Z_OOPS(!kernel_optval); ret = z_impl_zsock_getsockopt(sock, level, optname, kernel_optval, &kernel_optlen); Z_OOPS(z_user_to_copy((void *)optval, kernel_optval, kernel_optlen)); Z_OOPS(z_user_to_copy((void *)optlen, &kernel_optlen, sizeof(socklen_t))); k_free(kernel_optval); return ret; } #endif /* CONFIG_USERSPACE */ int zsock_setsockopt_ctx(struct net_context *ctx, int level, int optname, const void *optval, socklen_t optlen) { int ret; switch (level) { case SOL_SOCKET: switch (optname) { case SO_REUSEADDR: /* Ignore for now. Provided to let port * existing apps. */ return 0; case SO_PRIORITY: if (IS_ENABLED(CONFIG_NET_CONTEXT_PRIORITY)) { ret = net_context_set_option(ctx, NET_OPT_PRIORITY, optval, optlen); if (ret < 0) { errno = -ret; return -1; } return 0; } break; case SO_TIMESTAMPING: /* Calculate TX network packet timings */ if (IS_ENABLED(CONFIG_NET_CONTEXT_TIMESTAMP)) { ret = net_context_set_option(ctx, NET_OPT_TIMESTAMP, optval, optlen); if (ret < 0) { errno = -ret; return -1; } return 0; } break; case SO_TXTIME: if (IS_ENABLED(CONFIG_NET_CONTEXT_TXTIME)) { ret = net_context_set_option(ctx, NET_OPT_TXTIME, optval, optlen); if (ret < 0) { errno = -ret; return -1; } return 0; } break; case SO_SOCKS5: if (IS_ENABLED(CONFIG_SOCKS)) { ret = net_context_set_option(ctx, NET_OPT_SOCKS5, optval, optlen); if (ret < 0) { errno = -ret; return -1; } net_context_set_proxy_enabled(ctx, true); return 0; } break; } break; case IPPROTO_TCP: switch (optname) { case TCP_NODELAY: /* Ignore for now. Provided to let port * existing apps. */ return 0; } break; case IPPROTO_IPV6: switch (optname) { case IPV6_V6ONLY: /* Ignore for now. Provided to let port * existing apps. */ return 0; } break; } errno = ENOPROTOOPT; return -1; } int z_impl_zsock_setsockopt(int sock, int level, int optname, const void *optval, socklen_t optlen) { VTABLE_CALL(setsockopt, sock, level, optname, optval, optlen); } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(zsock_setsockopt, sock, level, optname, optval, optlen) { void *kernel_optval; int ret; kernel_optval = z_user_alloc_from_copy((const void *)optval, optlen); Z_OOPS(!kernel_optval); ret = z_impl_zsock_setsockopt(sock, level, optname, kernel_optval, optlen); k_free(kernel_optval); return ret; } #endif /* CONFIG_USERSPACE */ int zsock_getsockname_ctx(struct net_context *ctx, struct sockaddr *addr, socklen_t *addrlen) { socklen_t newlen = 0; /* If we don't have a connection handler, the socket is not bound */ if (ctx->conn_handler) { SET_ERRNO(EINVAL); } if (IS_ENABLED(CONFIG_NET_IPV4) && ctx->local.family == AF_INET) { struct sockaddr_in addr4 = { 0 }; addr4.sin_family = AF_INET; addr4.sin_port = net_sin_ptr(&ctx->local)->sin_port; memcpy(&addr4.sin_addr, net_sin_ptr(&ctx->local)->sin_addr, sizeof(struct in_addr)); newlen = sizeof(struct sockaddr_in); memcpy(addr, &addr4, MIN(*addrlen, newlen)); } else if (IS_ENABLED(CONFIG_NET_IPV6) && ctx->local.family == AF_INET6) { struct sockaddr_in6 addr6 = { 0 }; addr6.sin6_family = AF_INET6; addr6.sin6_port = net_sin6_ptr(&ctx->local)->sin6_port; memcpy(&addr6.sin6_addr, net_sin6_ptr(&ctx->local)->sin6_addr, sizeof(struct in6_addr)); newlen = sizeof(struct sockaddr_in6); memcpy(addr, &addr6, MIN(*addrlen, newlen)); } else { SET_ERRNO(EINVAL); } *addrlen = newlen; return 0; } int z_impl_zsock_getsockname(int sock, struct sockaddr *addr, socklen_t *addrlen) { const struct fd_op_vtable *vtable; void *ctx = z_get_fd_obj_and_vtable(sock, &vtable); if (ctx == NULL) { return -1; } NET_DBG("getsockname: ctx=%p, fd=%d", ctx, sock); return z_fdtable_call_ioctl(vtable, ctx, ZFD_IOCTL_GETSOCKNAME, addr, addrlen); } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(zsock_getsockname, sock, addr, addrlen) { socklen_t addrlen_copy; int ret; Z_OOPS(z_user_from_copy(&addrlen_copy, (void *)addrlen, sizeof(socklen_t))); if (Z_SYSCALL_MEMORY_WRITE(addr, addrlen_copy)) { errno = EFAULT; return -1; } ret = z_impl_zsock_getsockname(sock, (struct sockaddr *)addr, &addrlen_copy); if (ret == 0 && z_user_to_copy((void *)addrlen, &addrlen_copy, sizeof(socklen_t))) { errno = EINVAL; return -1; } return ret; } #endif /* CONFIG_USERSPACE */ static ssize_t sock_read_vmeth(void *obj, void *buffer, size_t count) { return zsock_recvfrom_ctx(obj, buffer, count, 0, NULL, 0); } static ssize_t sock_write_vmeth(void *obj, const void *buffer, size_t count) { return zsock_sendto_ctx(obj, buffer, count, 0, NULL, 0); } static int sock_ioctl_vmeth(void *obj, unsigned int request, va_list args) { switch (request) { /* In Zephyr, fcntl() is just an alias of ioctl(). */ case F_GETFL: if (sock_is_nonblock(obj)) { return O_NONBLOCK; } return 0; case F_SETFL: { int flags; flags = va_arg(args, int); if (flags & O_NONBLOCK) { sock_set_flag(obj, SOCK_NONBLOCK, SOCK_NONBLOCK); } else { sock_set_flag(obj, SOCK_NONBLOCK, 0); } return 0; } case ZFD_IOCTL_CLOSE: return zsock_close_ctx(obj); case ZFD_IOCTL_POLL_PREPARE: { struct zsock_pollfd *pfd; struct k_poll_event **pev; struct k_poll_event *pev_end; pfd = va_arg(args, struct zsock_pollfd *); pev = va_arg(args, struct k_poll_event **); pev_end = va_arg(args, struct k_poll_event *); return zsock_poll_prepare_ctx(obj, pfd, pev, pev_end); } case ZFD_IOCTL_POLL_UPDATE: { struct zsock_pollfd *pfd; struct k_poll_event **pev; pfd = va_arg(args, struct zsock_pollfd *); pev = va_arg(args, struct k_poll_event **); return zsock_poll_update_ctx(obj, pfd, pev); } case ZFD_IOCTL_GETSOCKNAME: { struct sockaddr *addr; socklen_t *addrlen; addr = va_arg(args, struct sockaddr *); addrlen = va_arg(args, socklen_t *); return zsock_getsockname_ctx(obj, addr, addrlen); } default: errno = EOPNOTSUPP; return -1; } } static int sock_bind_vmeth(void *obj, const struct sockaddr *addr, socklen_t addrlen) { return zsock_bind_ctx(obj, addr, addrlen); } static int sock_connect_vmeth(void *obj, const struct sockaddr *addr, socklen_t addrlen) { return zsock_connect_ctx(obj, addr, addrlen); } static int sock_listen_vmeth(void *obj, int backlog) { return zsock_listen_ctx(obj, backlog); } static int sock_accept_vmeth(void *obj, struct sockaddr *addr, socklen_t *addrlen) { return zsock_accept_ctx(obj, addr, addrlen); } static ssize_t sock_sendto_vmeth(void *obj, const void *buf, size_t len, int flags, const struct sockaddr *dest_addr, socklen_t addrlen) { return zsock_sendto_ctx(obj, buf, len, flags, dest_addr, addrlen); } static ssize_t sock_sendmsg_vmeth(void *obj, const struct msghdr *msg, int flags) { return zsock_sendmsg_ctx(obj, msg, flags); } static ssize_t sock_recvfrom_vmeth(void *obj, void *buf, size_t max_len, int flags, struct sockaddr *src_addr, socklen_t *addrlen) { return zsock_recvfrom_ctx(obj, buf, max_len, flags, src_addr, addrlen); } static int sock_getsockopt_vmeth(void *obj, int level, int optname, void *optval, socklen_t *optlen) { return zsock_getsockopt_ctx(obj, level, optname, optval, optlen); } static int sock_setsockopt_vmeth(void *obj, int level, int optname, const void *optval, socklen_t optlen) { return zsock_setsockopt_ctx(obj, level, optname, optval, optlen); } const struct socket_op_vtable sock_fd_op_vtable = { .fd_vtable = { .read = sock_read_vmeth, .write = sock_write_vmeth, .ioctl = sock_ioctl_vmeth, }, .bind = sock_bind_vmeth, .connect = sock_connect_vmeth, .listen = sock_listen_vmeth, .accept = sock_accept_vmeth, .sendto = sock_sendto_vmeth, .sendmsg = sock_sendmsg_vmeth, .recvfrom = sock_recvfrom_vmeth, .getsockopt = sock_getsockopt_vmeth, .setsockopt = sock_setsockopt_vmeth, };