/* spi.c - SPI based Bluetooth driver */ #define DT_DRV_COMPAT zephyr_bt_hci_spi /* * Copyright (c) 2017 Linaro Ltd. * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #define BT_DBG_ENABLED IS_ENABLED(CONFIG_BT_DEBUG_HCI_DRIVER) #define LOG_MODULE_NAME bt_driver #include "common/log.h" #define HCI_CMD 0x01 #define HCI_ACL 0x02 #define HCI_SCO 0x03 #define HCI_EVT 0x04 /* Special Values */ #define SPI_WRITE 0x0A #define SPI_READ 0x0B #define READY_NOW 0x02 #define EVT_BLUE_INITIALIZED 0x01 /* Offsets */ #define STATUS_HEADER_READY 0 #define STATUS_HEADER_TOREAD 3 #define PACKET_TYPE 0 #define EVT_HEADER_TYPE 0 #define EVT_HEADER_EVENT 1 #define EVT_HEADER_SIZE 2 #define EVT_VENDOR_CODE_LSB 3 #define EVT_VENDOR_CODE_MSB 4 #define CMD_OGF 1 #define CMD_OCF 2 #define GPIO_IRQ_PIN DT_INST_GPIO_PIN(0, irq_gpios) #define GPIO_IRQ_FLAGS DT_INST_GPIO_FLAGS(0, irq_gpios) #define GPIO_RESET_PIN DT_INST_GPIO_PIN(0, reset_gpios) #define GPIO_RESET_FLAGS DT_INST_GPIO_FLAGS(0, reset_gpios) #if DT_INST_SPI_DEV_HAS_CS_GPIOS(0) #define GPIO_CS_PIN DT_INST_SPI_DEV_CS_GPIOS_PIN(0) #define GPIO_CS_FLAGS DT_INST_SPI_DEV_CS_GPIOS_FLAGS(0) #endif /* DT_INST_SPI_DEV_HAS_CS_GPIOS(0) */ /* Max SPI buffer length for transceive operations. * * Buffer size needs to be at least the size of the larger RX/TX buffer * required by the SPI slave, as the legacy spi_transceive requires both RX/TX * to be the same length. Size also needs to be compatible with the * slave device used (e.g. nRF5X max buffer length for SPIS is 255). */ #define SPI_MAX_MSG_LEN 255 /* As defined by X-NUCLEO-IDB04A1 BSP */ static uint8_t rxmsg[SPI_MAX_MSG_LEN]; static uint8_t txmsg[SPI_MAX_MSG_LEN]; static struct device *irq_dev; static struct device *rst_dev; static struct gpio_callback gpio_cb; static K_SEM_DEFINE(sem_initialised, 0, 1); static K_SEM_DEFINE(sem_request, 0, 1); static K_SEM_DEFINE(sem_busy, 1, 1); static K_THREAD_STACK_DEFINE(spi_rx_stack, 256); static struct k_thread spi_rx_thread_data; #if defined(CONFIG_BT_DEBUG_HCI_DRIVER) #include static inline void spi_dump_message(const uint8_t *pre, uint8_t *buf, uint8_t size) { uint8_t i, c; printk("%s (%d): ", pre, size); for (i = 0U; i < size; i++) { c = buf[i]; printk("%x ", c); if (c >= 31U && c <= 126U) { printk("[%c] ", c); } else { printk("[.] "); } } printk("\n"); } #else static inline void spi_dump_message(const uint8_t *pre, uint8_t *buf, uint8_t size) {} #endif #if defined(CONFIG_BT_SPI_BLUENRG) static struct device *cs_dev; /* Define a limit when reading IRQ high */ /* It can be required to be increased for */ /* some particular cases. */ #define IRQ_HIGH_MAX_READ 3 static uint8_t attempts; #endif /* CONFIG_BT_SPI_BLUENRG */ #if defined(CONFIG_BT_BLUENRG_ACI) #define BLUENRG_ACI_WRITE_CONFIG_DATA BT_OP(BT_OGF_VS, 0x000C) #define BLUENRG_ACI_WRITE_CONFIG_CMD_LL 0x2C #define BLUENRG_ACI_LL_MODE 0x01 struct bluenrg_aci_cmd_ll_param { uint8_t cmd; uint8_t length; uint8_t value; }; static int bt_spi_send_aci_config_data_controller_mode(void); #endif /* CONFIG_BT_BLUENRG_ACI */ static struct device *spi_dev; static struct spi_config spi_conf = { .frequency = DT_INST_PROP(0, spi_max_frequency), .operation = (SPI_OP_MODE_MASTER | SPI_TRANSFER_MSB | SPI_WORD_SET(8) | SPI_LINES_SINGLE), .slave = 0, .cs = NULL, }; static struct spi_buf spi_tx_buf; static struct spi_buf spi_rx_buf; static const struct spi_buf_set spi_tx = { .buffers = &spi_tx_buf, .count = 1 }; static const struct spi_buf_set spi_rx = { .buffers = &spi_rx_buf, .count = 1 }; static inline int bt_spi_transceive(void *tx, uint32_t tx_len, void *rx, uint32_t rx_len) { spi_tx_buf.buf = tx; spi_tx_buf.len = (size_t)tx_len; spi_rx_buf.buf = rx; spi_rx_buf.len = (size_t)rx_len; return spi_transceive(spi_dev, &spi_conf, &spi_tx, &spi_rx); } static inline uint16_t bt_spi_get_cmd(uint8_t *txmsg) { return (txmsg[CMD_OCF] << 8) | txmsg[CMD_OGF]; } static inline uint16_t bt_spi_get_evt(uint8_t *rxmsg) { return (rxmsg[EVT_VENDOR_CODE_MSB] << 8) | rxmsg[EVT_VENDOR_CODE_LSB]; } static void bt_spi_isr(struct device *unused1, struct gpio_callback *unused2, uint32_t unused3) { BT_DBG(""); k_sem_give(&sem_request); } static void bt_spi_handle_vendor_evt(uint8_t *rxmsg) { switch (bt_spi_get_evt(rxmsg)) { case EVT_BLUE_INITIALIZED: k_sem_give(&sem_initialised); #if defined(CONFIG_BT_BLUENRG_ACI) /* force BlueNRG to be on controller mode */ bt_spi_send_aci_config_data_controller_mode(); #endif default: break; } } #if defined(CONFIG_BT_SPI_BLUENRG) /* BlueNRG has a particuliar way to wake up from sleep and be ready. * All is done through its CS line: * If it is in sleep mode, the first transaction will not return ready * status. At this point, it's necessary to release the CS and retry * within 2ms the same transaction. And again when it's required to * know the amount of byte to read. * (See section 5.2 of BlueNRG-MS datasheet) */ static int configure_cs(void) { cs_dev = device_get_binding(DT_INST_SPI_DEV_CS_GPIOS_LABEL(0)); if (!cs_dev) { BT_ERR("Failed to initialize GPIO driver: %s", DT_INST_SPI_DEV_CS_GPIOS_LABEL(0)); return -EIO; } /* Configure pin as output and set to active */ gpio_pin_configure(cs_dev, GPIO_CS_PIN, GPIO_OUTPUT_ACTIVE | GPIO_CS_FLAGS); return 0; } static void kick_cs(void) { gpio_pin_set(cs_dev, GPIO_CS_PIN, 1); gpio_pin_set(cs_dev, GPIO_CS_PIN, 0); } static void release_cs(void) { gpio_pin_set(cs_dev, GPIO_CS_PIN, 1); } static bool irq_pin_high(void) { int pin_state; pin_state = gpio_pin_get(irq_dev, GPIO_IRQ_PIN); BT_DBG("IRQ Pin: %d", pin_state); return pin_state > 0; } static void init_irq_high_loop(void) { attempts = IRQ_HIGH_MAX_READ; } static bool exit_irq_high_loop(void) { /* Limit attempts on BlueNRG-MS as we might */ /* enter this loop with nothing to read */ attempts--; return attempts; } #else static int configure_cs(void) { #ifdef GPIO_CS_PIN static struct spi_cs_control spi_conf_cs; spi_conf_cs.gpio_pin = GPIO_CS_PIN, spi_conf_cs.gpio_dev = device_get_binding( DT_INST_SPI_DEV_CS_GPIOS_LABEL(0)); if (!spi_conf_cs.gpio_dev) { BT_ERR("Failed to initialize GPIO driver: %s", DT_INST_SPI_DEV_CS_GPIOS_LABEL(0)); return -EIO; } spi_conf.cs = &spi_conf_cs; #endif /* GPIO_CS_PIN */ return 0; } #define kick_cs(...) #define release_cs(...) #define irq_pin_high(...) 0 #define init_irq_high_loop(...) #define exit_irq_high_loop(...) 1 #endif /* CONFIG_BT_SPI_BLUENRG */ #if defined(CONFIG_BT_BLUENRG_ACI) static int bt_spi_send_aci_config_data_controller_mode(void) { struct bluenrg_aci_cmd_ll_param *param; struct net_buf *buf; buf = bt_hci_cmd_create(BLUENRG_ACI_WRITE_CONFIG_DATA, sizeof(*param)); if (!buf) { return -ENOBUFS; } param = net_buf_add(buf, sizeof(*param)); param->cmd = BLUENRG_ACI_WRITE_CONFIG_CMD_LL; param->length = 0x1; /* Force BlueNRG-MS roles to Link Layer only mode */ param->value = BLUENRG_ACI_LL_MODE; bt_hci_cmd_send(BLUENRG_ACI_WRITE_CONFIG_DATA, buf); return 0; } #endif /* CONFIG_BT_BLUENRG_ACI */ static void bt_spi_rx_thread(void) { struct net_buf *buf; uint8_t header_master[5] = { SPI_READ, 0x00, 0x00, 0x00, 0x00 }; uint8_t header_slave[5]; struct bt_hci_acl_hdr acl_hdr; uint8_t size = 0U; int ret; (void)memset(&txmsg, 0xFF, SPI_MAX_MSG_LEN); while (true) { k_sem_take(&sem_request, K_FOREVER); /* Disable IRQ pin callback to avoid spurious IRQs */ gpio_pin_interrupt_configure(irq_dev, GPIO_IRQ_PIN, GPIO_INT_DISABLE); k_sem_take(&sem_busy, K_FOREVER); BT_DBG(""); do { init_irq_high_loop(); do { kick_cs(); ret = bt_spi_transceive(header_master, 5, header_slave, 5); } while ((((header_slave[STATUS_HEADER_TOREAD] == 0U || header_slave[STATUS_HEADER_TOREAD] == 0xFF) && !ret)) && exit_irq_high_loop()); size = header_slave[STATUS_HEADER_TOREAD]; if (!ret || size != 0) { do { ret = bt_spi_transceive(&txmsg, size, &rxmsg, size); } while (rxmsg[0] == 0U && ret == 0); } release_cs(); gpio_pin_interrupt_configure(irq_dev, GPIO_IRQ_PIN, GPIO_INT_EDGE_TO_ACTIVE); k_sem_give(&sem_busy); if (ret || size == 0) { if (ret) { BT_ERR("Error %d", ret); } continue; } spi_dump_message("RX:ed", rxmsg, size); switch (rxmsg[PACKET_TYPE]) { case HCI_EVT: switch (rxmsg[EVT_HEADER_EVENT]) { case BT_HCI_EVT_VENDOR: /* Vendor events are currently unsupported */ bt_spi_handle_vendor_evt(rxmsg); continue; default: buf = bt_buf_get_evt(rxmsg[EVT_HEADER_EVENT], false, K_FOREVER); break; } net_buf_add_mem(buf, &rxmsg[1], rxmsg[EVT_HEADER_SIZE] + 2); break; case HCI_ACL: buf = bt_buf_get_rx(BT_BUF_ACL_IN, K_FOREVER); memcpy(&acl_hdr, &rxmsg[1], sizeof(acl_hdr)); net_buf_add_mem(buf, &acl_hdr, sizeof(acl_hdr)); net_buf_add_mem(buf, &rxmsg[5], sys_le16_to_cpu(acl_hdr.len)); break; default: BT_ERR("Unknown BT buf type %d", rxmsg[0]); continue; } if (rxmsg[PACKET_TYPE] == HCI_EVT && bt_hci_evt_is_prio(rxmsg[EVT_HEADER_EVENT])) { bt_recv_prio(buf); } else { bt_recv(buf); } /* On BlueNRG-MS, host is expected to read */ /* as long as IRQ pin is high */ } while (irq_pin_high()); } } static int bt_spi_send(struct net_buf *buf) { uint8_t header[5] = { SPI_WRITE, 0x00, 0x00, 0x00, 0x00 }; int pending; int ret; BT_DBG(""); /* Buffer needs an additional byte for type */ if (buf->len >= SPI_MAX_MSG_LEN) { BT_ERR("Message too long"); return -EINVAL; } /* Allow time for the read thread to handle interrupt */ while (true) { pending = gpio_pin_get(irq_dev, GPIO_IRQ_PIN); if (pending <= 0) { break; } k_sleep(K_MSEC(1)); } k_sem_take(&sem_busy, K_FOREVER); switch (bt_buf_get_type(buf)) { case BT_BUF_ACL_OUT: net_buf_push_u8(buf, HCI_ACL); break; case BT_BUF_CMD: net_buf_push_u8(buf, HCI_CMD); break; default: BT_ERR("Unsupported type"); k_sem_give(&sem_busy); return -EINVAL; } /* Poll sanity values until device has woken-up */ do { kick_cs(); ret = bt_spi_transceive(header, 5, rxmsg, 5); /* * RX Header (rxmsg) must contain a sanity check Byte and size * information. If it does not contain BOTH then it is * sleeping or still in the initialisation stage (waking-up). */ } while ((rxmsg[STATUS_HEADER_READY] != READY_NOW || (rxmsg[1] | rxmsg[2] | rxmsg[3] | rxmsg[4]) == 0U) && !ret); k_sem_give(&sem_busy); if (!ret) { /* Transmit the message */ do { ret = bt_spi_transceive(buf->data, buf->len, rxmsg, buf->len); } while (rxmsg[0] == 0U && !ret); } release_cs(); if (ret) { BT_ERR("Error %d", ret); goto out; } spi_dump_message("TX:ed", buf->data, buf->len); #if defined(CONFIG_BT_SPI_BLUENRG) /* * Since a RESET has been requested, the chip will now restart. * Unfortunately the BlueNRG will reply with "reset received" but * since it does not send back a NOP, we have no way to tell when the * RESET has actually taken place. Instead, we use the vendor command * EVT_BLUE_INITIALIZED as an indication that it is safe to proceed. */ if (bt_spi_get_cmd(buf->data) == BT_HCI_OP_RESET) { k_sem_take(&sem_initialised, K_FOREVER); } #endif /* CONFIG_BT_SPI_BLUENRG */ out: net_buf_unref(buf); return ret; } static int bt_spi_open(void) { /* Configure RST pin and hold BLE in Reset */ gpio_pin_configure(rst_dev, GPIO_RESET_PIN, GPIO_OUTPUT_ACTIVE | GPIO_RESET_FLAGS); /* Configure IRQ pin and the IRQ call-back/handler */ gpio_pin_configure(irq_dev, GPIO_IRQ_PIN, GPIO_INPUT | GPIO_IRQ_FLAGS); gpio_init_callback(&gpio_cb, bt_spi_isr, BIT(GPIO_IRQ_PIN)); if (gpio_add_callback(irq_dev, &gpio_cb)) { return -EINVAL; } gpio_pin_interrupt_configure(irq_dev, GPIO_IRQ_PIN, GPIO_INT_EDGE_TO_ACTIVE); /* Start RX thread */ k_thread_create(&spi_rx_thread_data, spi_rx_stack, K_THREAD_STACK_SIZEOF(spi_rx_stack), (k_thread_entry_t)bt_spi_rx_thread, NULL, NULL, NULL, K_PRIO_COOP(CONFIG_BT_RX_PRIO - 1), 0, K_NO_WAIT); /* Take BLE out of reset */ gpio_pin_set(rst_dev, GPIO_RESET_PIN, 0); /* Device will let us know when it's ready */ k_sem_take(&sem_initialised, K_FOREVER); return 0; } static const struct bt_hci_driver drv = { .name = DT_INST_LABEL(0), .bus = BT_HCI_DRIVER_BUS_SPI, #if defined(CONFIG_BT_BLUENRG_ACI) .quirks = BT_QUIRK_NO_RESET, #endif /* CONFIG_BT_BLUENRG_ACI */ .open = bt_spi_open, .send = bt_spi_send, }; static int bt_spi_init(struct device *unused) { ARG_UNUSED(unused); spi_dev = device_get_binding(DT_INST_BUS_LABEL(0)); if (!spi_dev) { BT_ERR("Failed to initialize SPI driver: %s", DT_INST_BUS_LABEL(0)); return -EIO; } if (configure_cs()) { return -EIO; } irq_dev = device_get_binding( DT_INST_GPIO_LABEL(0, irq_gpios)); if (!irq_dev) { BT_ERR("Failed to initialize GPIO driver: %s", DT_INST_GPIO_LABEL(0, irq_gpios)); return -EIO; } rst_dev = device_get_binding( DT_INST_GPIO_LABEL(0, reset_gpios)); if (!rst_dev) { BT_ERR("Failed to initialize GPIO driver: %s", DT_INST_GPIO_LABEL(0, reset_gpios)); return -EIO; } bt_hci_driver_register(&drv); BT_DBG("BT SPI initialized"); return 0; } SYS_INIT(bt_spi_init, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE);