/* * Copyright (c) 2018 Nordic Semiconductor ASA * * SPDX-License-Identifier: Apache-2.0 */ #define ADC_CONTEXT_USES_KERNEL_TIMER #include "adc_context.h" #include #define LOG_LEVEL CONFIG_ADC_LOG_LEVEL #include LOG_MODULE_REGISTER(adc_nrfx_saadc); struct driver_data { struct adc_context ctx; u8_t positive_inputs[NRF_SAADC_CHANNEL_COUNT]; }; static struct driver_data m_data = { ADC_CONTEXT_INIT_TIMER(m_data, ctx), ADC_CONTEXT_INIT_LOCK(m_data, ctx), ADC_CONTEXT_INIT_SYNC(m_data, ctx), }; /* Implementation of the ADC driver API function: adc_channel_setup. */ static int adc_nrfx_channel_setup(struct device *dev, const struct adc_channel_cfg *channel_cfg) { nrf_saadc_channel_config_t config = { .resistor_p = NRF_SAADC_RESISTOR_DISABLED, .resistor_n = NRF_SAADC_RESISTOR_DISABLED, .burst = NRF_SAADC_BURST_DISABLED, }; u8_t channel_id = channel_cfg->channel_id; if (channel_id >= NRF_SAADC_CHANNEL_COUNT) { return -EINVAL; } switch (channel_cfg->gain) { case ADC_GAIN_1_6: config.gain = NRF_SAADC_GAIN1_6; break; case ADC_GAIN_1_5: config.gain = NRF_SAADC_GAIN1_5; break; case ADC_GAIN_1_4: config.gain = NRF_SAADC_GAIN1_4; break; case ADC_GAIN_1_3: config.gain = NRF_SAADC_GAIN1_3; break; case ADC_GAIN_1_2: config.gain = NRF_SAADC_GAIN1_2; break; case ADC_GAIN_1: config.gain = NRF_SAADC_GAIN1; break; case ADC_GAIN_2: config.gain = NRF_SAADC_GAIN2; break; case ADC_GAIN_4: config.gain = NRF_SAADC_GAIN4; break; default: LOG_ERR("Selected ADC gain is not valid"); return -EINVAL; } switch (channel_cfg->reference) { case ADC_REF_INTERNAL: config.reference = NRF_SAADC_REFERENCE_INTERNAL; break; case ADC_REF_VDD_1_4: config.reference = NRF_SAADC_REFERENCE_VDD4; break; default: LOG_ERR("Selected ADC reference is not valid"); return -EINVAL; } switch (channel_cfg->acquisition_time) { case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 3): config.acq_time = NRF_SAADC_ACQTIME_3US; break; case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 5): config.acq_time = NRF_SAADC_ACQTIME_5US; break; case ADC_ACQ_TIME_DEFAULT: case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 10): config.acq_time = NRF_SAADC_ACQTIME_10US; break; case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 15): config.acq_time = NRF_SAADC_ACQTIME_15US; break; case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 20): config.acq_time = NRF_SAADC_ACQTIME_20US; break; case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 40): config.acq_time = NRF_SAADC_ACQTIME_40US; break; default: LOG_ERR("Selected ADC acquisition time is not valid"); return -EINVAL; } config.mode = (channel_cfg->differential ? NRF_SAADC_MODE_DIFFERENTIAL : NRF_SAADC_MODE_SINGLE_ENDED); /* Keep the channel disabled in hardware (set positive input to * NRF_SAADC_INPUT_DISABLED) until it is selected to be included * in a sampling sequence. */ config.pin_p = NRF_SAADC_INPUT_DISABLED; config.pin_n = channel_cfg->input_negative; nrf_saadc_channel_init(channel_id, &config); /* Store the positive input selection in a dedicated array, * to get it later when the channel is selected for a sampling * and to mark the channel as configured (ready to be selected). */ m_data.positive_inputs[channel_id] = channel_cfg->input_positive; return 0; } static void adc_context_start_sampling(struct adc_context *ctx) { ARG_UNUSED(ctx); nrf_saadc_enable(); nrf_saadc_task_trigger(NRF_SAADC_TASK_START); nrf_saadc_task_trigger(NRF_SAADC_TASK_SAMPLE); } static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat) { ARG_UNUSED(ctx); if (!repeat) { nrf_saadc_buffer_pointer_set( nrf_saadc_buffer_pointer_get() + nrf_saadc_amount_get()); } } static int set_resolution(const struct adc_sequence *sequence) { nrf_saadc_resolution_t nrf_resolution; switch (sequence->resolution) { case 8: nrf_resolution = NRF_SAADC_RESOLUTION_8BIT; break; case 10: nrf_resolution = NRF_SAADC_RESOLUTION_10BIT; break; case 12: nrf_resolution = NRF_SAADC_RESOLUTION_12BIT; break; case 14: nrf_resolution = NRF_SAADC_RESOLUTION_14BIT; break; default: LOG_ERR("ADC resolution value %d is not valid", sequence->resolution); return -EINVAL; } nrf_saadc_resolution_set(nrf_resolution); return 0; } static int set_oversampling(const struct adc_sequence *sequence, u8_t active_channels) { nrf_saadc_oversample_t nrf_oversampling; if ((active_channels > 1) && (sequence->oversampling > 0)) { LOG_ERR( "Oversampling is supported for single channel only"); return -EINVAL; } switch (sequence->oversampling) { case 0: nrf_oversampling = NRF_SAADC_OVERSAMPLE_DISABLED; break; case 1: nrf_oversampling = NRF_SAADC_OVERSAMPLE_2X; break; case 2: nrf_oversampling = NRF_SAADC_OVERSAMPLE_4X; break; case 3: nrf_oversampling = NRF_SAADC_OVERSAMPLE_8X; break; case 4: nrf_oversampling = NRF_SAADC_OVERSAMPLE_16X; break; case 5: nrf_oversampling = NRF_SAADC_OVERSAMPLE_32X; break; case 6: nrf_oversampling = NRF_SAADC_OVERSAMPLE_64X; break; case 7: nrf_oversampling = NRF_SAADC_OVERSAMPLE_128X; break; case 8: nrf_oversampling = NRF_SAADC_OVERSAMPLE_256X; break; default: LOG_ERR("Oversampling value %d is not valid", sequence->oversampling); return -EINVAL; } nrf_saadc_oversample_set(nrf_oversampling); return 0; } static int check_buffer_size(const struct adc_sequence *sequence, u8_t active_channels) { size_t needed_buffer_size; needed_buffer_size = active_channels * sizeof(nrf_saadc_value_t); if (sequence->options) { needed_buffer_size *= (1 + sequence->options->extra_samplings); } if (sequence->buffer_size < needed_buffer_size) { LOG_ERR("Provided buffer is too small (%u/%u)", sequence->buffer_size, needed_buffer_size); return -ENOMEM; } return 0; } static int start_read(struct device *dev, const struct adc_sequence *sequence) { int error = 0; u32_t selected_channels = sequence->channels; u8_t active_channels; u8_t channel_id; /* Signal an error if channel selection is invalid (no channels or * a non-existing one is selected). */ if (!selected_channels || (selected_channels & ~BIT_MASK(NRF_SAADC_CHANNEL_COUNT))) { LOG_ERR("Invalid selection of channels"); return -EINVAL; } active_channels = 0; /* Enable only the channels selected for the pointed sequence. * Disable all the rest. */ channel_id = 0; do { if (selected_channels & BIT(channel_id)) { /* Signal an error if a selected channel has not been * configured yet. */ if (m_data.positive_inputs[channel_id] == 0) { LOG_ERR("Channel %u not configured", channel_id); return -EINVAL; } /* When oversampling is used, the burst mode needs to * be activated. Unfortunately, this mode cannot be * activated permanently in the channel setup, because * then the multiple channel sampling fails (the END * event is not generated) after switching to a single * channel sampling and back. Thus, when oversampling * is not used (hence, the multiple channel sampling is * possible), the burst mode have to be deactivated. */ nrf_saadc_burst_set(channel_id, (sequence->oversampling != 0 ? NRF_SAADC_BURST_ENABLED : NRF_SAADC_BURST_DISABLED)); nrf_saadc_channel_pos_input_set( channel_id, m_data.positive_inputs[channel_id]); ++active_channels; } else { nrf_saadc_channel_pos_input_set( channel_id, NRF_SAADC_INPUT_DISABLED); } } while (++channel_id < NRF_SAADC_CHANNEL_COUNT); error = set_resolution(sequence); if (error) { return error; } error = set_oversampling(sequence, active_channels); if (error) { return error; } error = check_buffer_size(sequence, active_channels); if (error) { return error; } nrf_saadc_buffer_init((nrf_saadc_value_t *)sequence->buffer, active_channels); adc_context_start_read(&m_data.ctx, sequence); error = adc_context_wait_for_completion(&m_data.ctx); adc_context_release(&m_data.ctx, error); return error; } /* Implementation of the ADC driver API function: adc_read. */ static int adc_nrfx_read(struct device *dev, const struct adc_sequence *sequence) { adc_context_lock(&m_data.ctx, false, NULL); return start_read(dev, sequence); } #ifdef CONFIG_ADC_ASYNC /* Implementation of the ADC driver API function: adc_read_async. */ static int adc_nrfx_read_async(struct device *dev, const struct adc_sequence *sequence, struct k_poll_signal *async) { adc_context_lock(&m_data.ctx, true, async); return start_read(dev, sequence); } #endif static void saadc_irq_handler(void *param) { struct device *dev = (struct device *)param; if (nrf_saadc_event_check(NRF_SAADC_EVENT_END)) { nrf_saadc_event_clear(NRF_SAADC_EVENT_END); nrf_saadc_task_trigger(NRF_SAADC_TASK_STOP); nrf_saadc_disable(); adc_context_on_sampling_done(&m_data.ctx, dev); } } DEVICE_DECLARE(adc_0); static int init_saadc(struct device *dev) { nrf_saadc_event_clear(NRF_SAADC_EVENT_END); nrf_saadc_int_enable(NRF_SAADC_INT_END); NRFX_IRQ_ENABLE(CONFIG_ADC_0_IRQ); IRQ_CONNECT(CONFIG_ADC_0_IRQ, CONFIG_ADC_0_IRQ_PRI, saadc_irq_handler, DEVICE_GET(adc_0), 0); adc_context_unlock_unconditionally(&m_data.ctx); return 0; } static const struct adc_driver_api adc_nrfx_driver_api = { .channel_setup = adc_nrfx_channel_setup, .read = adc_nrfx_read, #ifdef CONFIG_ADC_ASYNC .read_async = adc_nrfx_read_async, #endif }; #ifdef CONFIG_ADC_0 DEVICE_AND_API_INIT(adc_0, CONFIG_ADC_0_NAME, init_saadc, NULL, NULL, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &adc_nrfx_driver_api); #endif /* CONFIG_ADC_0 */