/* FIFO kernel services */ /* * Copyright (c) 1997-2010, 2013-2014 Wind River Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2) Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3) Neither the name of Wind River Systems nor the names of its contributors * may be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include /******************************************************************************* * * K_enqrpl - finish performing an incomplete FIFO enqueue request * * RETURNS: N/A */ void K_enqrpl(struct k_args *A) { if (A->Time.timer) FREETIMER(A->Time.timer); if (unlikely(A->Comm == ENQ_TMO)) { REMOVE_ELM(A); A->Time.rcode = RC_TIME; } else A->Time.rcode = RC_OK; reset_state_bit(A->Ctxt.proc, TF_ENQU); } /******************************************************************************* * * K_enqreq - perform a FIFO enqueue request * * RETURNS: N/A */ void K_enqreq(struct k_args *A) { struct k_args *W; struct que_struct *Q; int Qid, n, w; char *p, *q; /* Ski char->uint32_t ??? */ Qid = A->Args.q1.queue; Q = _k_fifo_list + OBJ_INDEX(Qid); w = OCTET_TO_SIZEOFUNIT(Q->Esize); q = A->Args.q1.data; n = Q->Nused; if (n < Q->Nelms) { W = Q->Waiters; if (W) { Q->Waiters = W->Forw; p = W->Args.q1.data; k_memcpy(p, q, w); #ifndef LITE if (W->Time.timer) { force_timeout(W); W->Comm = DEQ_RPL; } else { #endif W->Time.rcode = RC_OK; reset_state_bit(W->Ctxt.proc, TF_DEQU); } #ifndef LITE } #endif else { p = Q->Enqp; k_memcpy(p, q, w); p = (char *)((int)p + w); if (p == Q->Endp) Q->Enqp = Q->Base; else Q->Enqp = p; Q->Nused = ++n; #ifdef CONFIG_OBJECT_MONITOR if (Q->Hmark < n) Q->Hmark = n; #endif } A->Time.rcode = RC_OK; #ifdef CONFIG_OBJECT_MONITOR Q->Count++; #endif } else { if (likely(A->Time.ticks != TICKS_NONE)) { A->Ctxt.proc = _k_current_task; A->Prio = _k_current_task->Prio; set_state_bit(_k_current_task, TF_ENQU); INSERT_ELM(Q->Waiters, A); #ifndef LITE if (A->Time.ticks == TICKS_UNLIMITED) A->Time.timer = NULL; else { A->Comm = ENQ_TMO; enlist_timeout(A); } #endif } else { A->Time.rcode = RC_FAIL; } } } /******************************************************************************* * * _task_fifo_put - FIFO enqueue request * * This routine puts an entry at the end of the FIFO queue. * * RETURNS: RC_OK, RC_FAIL, RC_TIME on success, failure, timeout respectively */ int _task_fifo_put(kfifo_t queue, /* FIFO queue */ void *data, /* ptr to data to add to queue */ int32_t time /* maximum number of ticks to wait */ ) { struct k_args A; A.Comm = ENQ_REQ; A.Time.ticks = time; A.Args.q1.data = (char *)data; A.Args.q1.queue = queue; KERNEL_ENTRY(&A); return A.Time.rcode; } /******************************************************************************* * * K_deqrpl - finish performing an incomplete FIFO dequeue request * * RETURNS: N/A */ void K_deqrpl(struct k_args *A) { if (A->Time.timer) FREETIMER(A->Time.timer); if (unlikely(A->Comm == DEQ_TMO)) { REMOVE_ELM(A); A->Time.rcode = RC_TIME; } else { A->Time.rcode = RC_OK; } reset_state_bit(A->Ctxt.proc, TF_DEQU); } /******************************************************************************* * * K_deqreq - perform FIFO dequeue request * * RETURNS: N/A */ void K_deqreq(struct k_args *A) { struct k_args *W; struct que_struct *Q; int Qid, n, w; char *p, *q; /* idem */ Qid = A->Args.q1.queue; Q = _k_fifo_list + OBJ_INDEX(Qid); w = OCTET_TO_SIZEOFUNIT(Q->Esize); p = A->Args.q1.data; n = Q->Nused; if (n) { q = Q->Deqp; k_memcpy(p, q, w); q = (char *)((int)q + w); if (q == Q->Endp) Q->Deqp = Q->Base; else Q->Deqp = q; A->Time.rcode = RC_OK; W = Q->Waiters; if (W) { Q->Waiters = W->Forw; p = Q->Enqp; q = W->Args.q1.data; w = OCTET_TO_SIZEOFUNIT(Q->Esize); k_memcpy(p, q, w); p = (char *)((int)p + w); if (p == Q->Endp) Q->Enqp = Q->Base; else Q->Enqp = p; #ifndef LITE if (W->Time.timer) { force_timeout(W); W->Comm = ENQ_RPL; } else { #endif W->Time.rcode = RC_OK; reset_state_bit(W->Ctxt.proc, TF_ENQU); #ifndef LITE } #endif #ifdef CONFIG_OBJECT_MONITOR Q->Count++; #endif } else Q->Nused = --n; } else { if (likely(A->Time.ticks != TICKS_NONE)) { A->Ctxt.proc = _k_current_task; A->Prio = _k_current_task->Prio; set_state_bit(_k_current_task, TF_DEQU); INSERT_ELM(Q->Waiters, A); #ifndef LITE if (A->Time.ticks == TICKS_UNLIMITED) A->Time.timer = NULL; else { A->Comm = DEQ_TMO; enlist_timeout(A); } #endif } else { A->Time.rcode = RC_FAIL; } } } /******************************************************************************* * * _task_fifo_get - FIFO dequeue request * * This routine tries to read a data element from the FIFO. * * If the FIFO is not empty, the oldest entry is removed and copied to the * address provided by the caller. * * RETURNS: RC_OK, RC_FAIL, RC_TIME on success, failure, timeout respectively */ int _task_fifo_get(kfifo_t queue, /* FIFO queue */ void *data, /* where to store FIFO entry */ int32_t time /* maximum number of ticks to wait */ ) { struct k_args A; A.Comm = DEQ_REQ; A.Time.ticks = time; A.Args.q1.data = (char *)data; A.Args.q1.queue = queue; KERNEL_ENTRY(&A); return A.Time.rcode; } /******************************************************************************* * * K_queue - perform miscellaneous FIFO request * * RETURNS: N/A */ void K_queue(struct k_args *A) { struct que_struct *Q; int Qid; Qid = A->Args.q1.queue; Q = _k_fifo_list + OBJ_INDEX(Qid); if (A->Args.q1.size) { if (Q->Nused) { struct k_args *X; while ((X = Q->Waiters)) { Q->Waiters = X->Forw; #ifndef LITE if (likely(X->Time.timer)) { force_timeout(X); X->Comm = ENQ_RPL; } else { #endif X->Time.rcode = RC_FAIL; reset_state_bit(X->Ctxt.proc, TF_ENQU); #ifndef LITE } #endif } } Q->Nused = 0; Q->Enqp = Q->Deqp = Q->Base; A->Time.rcode = RC_OK; } else A->Time.rcode = Q->Nused; } /******************************************************************************* * * _task_fifo_ioctl - miscellaneous FIFO request * * Depending upon the chosen operation, this routine will ... * 1. = 0 : query the number of FIFO entries * 2. = 1 : purge the FIFO of its entries * * RETURNS: # of FIFO entries on query; RC_OK on purge */ int _task_fifo_ioctl(kfifo_t queue, /* FIFO queue */ int op /* 0: status query; 1: purge */ ) { struct k_args A; A.Comm = QUEUE; A.Args.q1.queue = queue; A.Args.q1.size = op; KERNEL_ENTRY(&A); return A.Time.rcode; }