/* * Copyright (c) 2022 Andes Technology Corporation. * * SPDX-License-Identifier: Apache-2.0 */ #include "spi_andes_atcspi200.h" #include #define DT_DRV_COMPAT andestech_atcspi200 typedef void (*atcspi200_cfg_func_t)(void); struct spi_atcspi200_data { struct spi_context ctx; uint32_t tx_fifo_size; uint32_t rx_fifo_size; int tx_cnt; uint32_t is_cmdaddr_mode; size_t chunk_len; bool busy; }; struct spi_atcspi200_cfg { atcspi200_cfg_func_t cfg_func; uint32_t base; uint32_t irq_num; uint32_t f_sys; bool xip; }; /* API Functions */ static int spi_config(const struct device *dev, const struct spi_config *config) { const struct spi_atcspi200_cfg * const cfg = dev->config; uint32_t sclk_div, data_len; /* Set the divisor for SPI interface sclk */ sclk_div = (cfg->f_sys / (config->frequency << 1)) - 1; CLR_MASK(SPI_TIMIN(dev), TIMIN_SCLK_DIV_MSK); SET_MASK(SPI_TIMIN(dev), sclk_div); /* Set Master mode */ CLR_MASK(SPI_TFMAT(dev), TFMAT_SLVMODE_MSK); /* Disable data merge mode */ CLR_MASK(SPI_TFMAT(dev), TFMAT_DATA_MERGE_MSK); /* Set data length */ data_len = SPI_WORD_SIZE_GET(config->operation) - 1; CLR_MASK(SPI_TFMAT(dev), TFMAT_DATA_LEN_MSK); SET_MASK(SPI_TFMAT(dev), (data_len << TFMAT_DATA_LEN_OFFSET)); /* Set SPI frame format */ if (config->operation & SPI_MODE_CPHA) { SET_MASK(SPI_TFMAT(dev), TFMAT_CPHA_MSK); } else { CLR_MASK(SPI_TFMAT(dev), TFMAT_CPHA_MSK); } if (config->operation & SPI_MODE_CPOL) { SET_MASK(SPI_TFMAT(dev), TFMAT_CPOL_MSK); } else { CLR_MASK(SPI_TFMAT(dev), TFMAT_CPOL_MSK); } /* Set SPI bit order */ if (config->operation & SPI_TRANSFER_LSB) { SET_MASK(SPI_TFMAT(dev), TFMAT_LSB_MSK); } else { CLR_MASK(SPI_TFMAT(dev), TFMAT_LSB_MSK); } /* Set TX/RX FIFO threshold */ CLR_MASK(SPI_CTRL(dev), CTRL_TX_THRES_MSK); CLR_MASK(SPI_CTRL(dev), CTRL_RX_THRES_MSK); SET_MASK(SPI_CTRL(dev), TX_FIFO_THRESHOLD << CTRL_TX_THRES_OFFSET); SET_MASK(SPI_CTRL(dev), RX_FIFO_THRESHOLD << CTRL_RX_THRES_OFFSET); return 0; } static int spi_transfer(const struct device *dev, uint32_t len) { struct spi_atcspi200_data * const data = dev->data; struct spi_context *ctx = &data->ctx; uint32_t data_len, tctrl, int_msk; if (len > MAX_TRANSFER_CNT) { return -EINVAL; } data_len = len - 1; data->tx_cnt = 0; if (!spi_context_rx_on(ctx)) { tctrl = (TRNS_MODE_WRITE_ONLY << TCTRL_TRNS_MODE_OFFSET) | (data_len << TCTRL_WR_TCNT_OFFSET); int_msk = IEN_TX_FIFO_MSK | IEN_END_MSK; } else if (!spi_context_tx_on(ctx)) { tctrl = (TRNS_MODE_READ_ONLY << TCTRL_TRNS_MODE_OFFSET) | (data_len << TCTRL_RD_TCNT_OFFSET); int_msk = IEN_RX_FIFO_MSK | IEN_END_MSK; } else { tctrl = (TRNS_MODE_WRITE_READ << TCTRL_TRNS_MODE_OFFSET) | (data_len << TCTRL_WR_TCNT_OFFSET) | (data_len << TCTRL_RD_TCNT_OFFSET); int_msk = IEN_TX_FIFO_MSK | IEN_RX_FIFO_MSK | IEN_END_MSK; } sys_write32(tctrl, SPI_TCTRL(dev)); /* Enable TX/RX FIFO interrupts */ sys_write32(int_msk, SPI_INTEN(dev)); if (!data->is_cmdaddr_mode) { /* Start transferring */ sys_write32(0, SPI_CMD(dev)); } return 0; } static int configure(const struct device *dev, const struct spi_config *config) { struct spi_atcspi200_data * const data = dev->data; struct spi_context *ctx = &(data->ctx); if (spi_context_configured(ctx, config)) { /* Already configured. No need to do it again. */ return 0; } if (SPI_OP_MODE_GET(config->operation) != SPI_OP_MODE_MASTER) { LOG_ERR("Slave mode is not supported on %s", dev->name); return -EINVAL; } if (config->operation & SPI_MODE_LOOP) { LOG_ERR("Loopback mode is not supported"); return -EINVAL; } if ((config->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) { LOG_ERR("Only single line mode is supported"); return -EINVAL; } ctx->config = config; /* SPI configuration */ spi_config(dev, config); return 0; } static void transfer_next_chunk(const struct device *dev) { struct spi_atcspi200_data * const data = dev->data; struct spi_context *ctx = &data->ctx; int error = 0; size_t chunk_len = spi_context_max_continuous_chunk(ctx); if (chunk_len > 0) { data->chunk_len = chunk_len; error = spi_transfer(dev, chunk_len); if (error == 0) { return; } } spi_context_cs_control(ctx, false); /* Reset TX/RX FIFO */ SET_MASK(SPI_CTRL(dev), CTRL_TX_FIFO_RST_MSK); SET_MASK(SPI_CTRL(dev), CTRL_RX_FIFO_RST_MSK); spi_context_complete(ctx, dev, error); data->busy = false; } static int transceive(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, bool asynchronous, spi_callback_t cb, void *userdata) { struct spi_atcspi200_data * const data = dev->data; struct spi_context *ctx = &data->ctx; int error, dfs; spi_context_lock(ctx, asynchronous, cb, userdata, config); error = configure(dev, config); if (error == 0) { data->busy = true; dfs = SPI_WORD_SIZE_GET(ctx->config->operation) >> 3; spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, dfs); spi_context_cs_control(ctx, true); transfer_next_chunk(dev); error = spi_context_wait_for_completion(ctx); } spi_context_release(ctx, error); return error; } int spi_atcspi200_transceive(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { return transceive(dev, config, tx_bufs, rx_bufs, false, NULL, NULL); } #ifdef CONFIG_SPI_ASYNC int spi_atcspi200_transceive_async(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, spi_callback_t cb, void *userdata) { return transceive(dev, config, tx_bufs, rx_bufs, true, cb, userdata); } #endif int spi_atcspi200_release(const struct device *dev, const struct spi_config *config) { struct spi_atcspi200_data * const data = dev->data; if (data->busy) { return -EBUSY; } spi_context_unlock_unconditionally(&data->ctx); return 0; } int spi_atcspi200_init(const struct device *dev) { const struct spi_atcspi200_cfg * const cfg = dev->config; struct spi_atcspi200_data * const data = dev->data; int err = 0; /* we should not configure the device we are running on */ if (cfg->xip) { return -EINVAL; } spi_context_unlock_unconditionally(&data->ctx); /* Get the TX/RX FIFO size of this device */ data->tx_fifo_size = TX_FIFO_SIZE(dev); data->rx_fifo_size = RX_FIFO_SIZE(dev); cfg->cfg_func(); irq_enable(cfg->irq_num); err = spi_context_cs_configure_all(&data->ctx); if (err < 0) { return err; } return 0; } static struct spi_driver_api spi_atcspi200_api = { .transceive = spi_atcspi200_transceive, #ifdef CONFIG_SPI_ASYNC .transceive_async = spi_atcspi200_transceive_async, #endif .release = spi_atcspi200_release }; static void spi_atcspi200_irq_handler(void *arg) { const struct device * const dev = (const struct device *) arg; struct spi_atcspi200_data * const data = dev->data; struct spi_context *ctx = &data->ctx; uint32_t rx_data, cur_tx_fifo_num, cur_rx_fifo_num; uint32_t i, dfs, intr_status, spi_status; uint32_t tx_num = 0, tx_data = 0; intr_status = sys_read32(SPI_INTST(dev)); dfs = SPI_WORD_SIZE_GET(ctx->config->operation) >> 3; if ((intr_status & INTST_TX_FIFO_INT_MSK) && !(intr_status & INTST_END_INT_MSK)) { spi_status = sys_read32(SPI_STAT(dev)); cur_tx_fifo_num = GET_TX_NUM(dev); tx_num = data->tx_fifo_size - cur_tx_fifo_num; for (i = tx_num; i > 0; i--) { if (data->tx_cnt >= data->chunk_len) { /* Have already sent a chunk of data, so stop * sending data! */ CLR_MASK(SPI_INTEN(dev), IEN_TX_FIFO_MSK); break; } if (spi_context_tx_buf_on(ctx)) { switch (dfs) { case 1: tx_data = *ctx->tx_buf; break; case 2: tx_data = *(uint16_t *)ctx->tx_buf; break; } } else if (spi_context_tx_on(ctx)) { tx_data = 0; } else { CLR_MASK(SPI_INTEN(dev), IEN_TX_FIFO_MSK); break; } sys_write32(tx_data, SPI_DATA(dev)); spi_context_update_tx(ctx, dfs, 1); data->tx_cnt++; } sys_write32(INTST_TX_FIFO_INT_MSK, SPI_INTST(dev)); } if (intr_status & INTST_RX_FIFO_INT_MSK) { cur_rx_fifo_num = GET_RX_NUM(dev); for (i = cur_rx_fifo_num; i > 0; i--) { rx_data = sys_read32(SPI_DATA(dev)); if (spi_context_rx_buf_on(ctx)) { switch (dfs) { case 1: *ctx->rx_buf = rx_data; break; case 2: *(uint16_t *)ctx->rx_buf = rx_data; break; } } else if (!spi_context_rx_on(ctx)) { CLR_MASK(SPI_INTEN(dev), IEN_RX_FIFO_MSK); } spi_context_update_rx(ctx, dfs, 1); } sys_write32(INTST_RX_FIFO_INT_MSK, SPI_INTST(dev)); } if (intr_status & INTST_END_INT_MSK) { /* Clear end interrupt */ sys_write32(INTST_END_INT_MSK, SPI_INTST(dev)); /* Disable all SPI interrupts */ sys_write32(0, SPI_INTEN(dev)); transfer_next_chunk(dev); } } #define SPI_DMA_CHANNEL(id, dir, DIR, src, dest) #define SPI_IF_NO_CMD(num) .is_cmdaddr_mode = 0, #define SPI_BUSY_INIT .busy = false, #if (CONFIG_XIP) #define SPI_ROM_CFG_XIP(node_id) DT_SAME_NODE(node_id, DT_BUS(DT_CHOSEN(zephyr_flash))) #else #define SPI_ROM_CFG_XIP(node_id) false #endif #define SPI_INIT(n) \ static struct spi_atcspi200_data spi_atcspi200_dev_data_##n = { \ SPI_CONTEXT_INIT_LOCK(spi_atcspi200_dev_data_##n, ctx), \ SPI_CONTEXT_INIT_SYNC(spi_atcspi200_dev_data_##n, ctx), \ SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx) \ SPI_IF_NO_CMD(n) \ SPI_BUSY_INIT \ SPI_DMA_CHANNEL(n, rx, RX, PERIPHERAL, MEMORY) \ SPI_DMA_CHANNEL(n, tx, TX, MEMORY, PERIPHERAL) \ }; \ static void spi_atcspi200_cfg_##n(void); \ static const struct spi_atcspi200_cfg spi_atcspi200_dev_cfg_##n = { \ .cfg_func = spi_atcspi200_cfg_##n, \ .base = DT_INST_REG_ADDR(n), \ .irq_num = DT_INST_IRQN(n), \ .f_sys = DT_INST_PROP(n, clock_frequency), \ .xip = SPI_ROM_CFG_XIP(DT_DRV_INST(n)), \ }; \ \ DEVICE_DT_INST_DEFINE(n, \ spi_atcspi200_init, \ NULL, \ &spi_atcspi200_dev_data_##n, \ &spi_atcspi200_dev_cfg_##n, \ POST_KERNEL, \ CONFIG_SPI_INIT_PRIORITY, \ &spi_atcspi200_api); \ \ static void spi_atcspi200_cfg_##n(void) \ { \ \ IRQ_CONNECT(DT_INST_IRQN(n), \ DT_INST_IRQ(n, priority), \ spi_atcspi200_irq_handler, \ DEVICE_DT_INST_GET(n), \ 0); \ \ } DT_INST_FOREACH_STATUS_OKAY(SPI_INIT)