zephyr/drivers/gpio/gpio_renesas_rx.c
Phi Tran 529a11057e drivers: gpio: renesas_rx: Refactor macros for conditional generation
This change introduces GPIO_RX_PORT_IRQ_DECL() and GPIO_RX_PORT_IRQ_ELEM()
macros to conditionally generate GPIO port IRQ declarations and elements
only when the 'port_irq_names' property exists in the device tree node.
This improves code clarity and avoids generating unused code for ports
that do not have IRQ support for Renesas RX

Signed-off-by: Phi Tran <phi.tran.jg@bp.renesas.com>
2025-07-19 15:40:18 -04:00

322 lines
10 KiB
C

/*
* Copyright (c) 2024 Renesas Electronics Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT renesas_rx_gpio
#include <string.h>
#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/gpio/gpio_utils.h>
#include <zephyr/drivers/interrupt_controller/intc_rx_icu.h>
#include <zephyr/drivers/misc/renesas_rx_external_interrupt/renesas_rx_external_interrupt.h>
#include <zephyr/irq.h>
#include <soc.h>
#include "r_mpc_rx_if.h"
struct gpio_rx_irq_info {
const struct device *port_irq;
const uint8_t *const pins;
size_t num;
};
struct gpio_rx_config {
struct gpio_driver_config common;
uint8_t port_num;
volatile uint8_t *pinmux;
volatile struct {
volatile uint8_t *pdr;
volatile uint8_t *podr;
volatile uint8_t *pidr;
volatile uint8_t *pmr;
volatile uint8_t *odr0;
volatile uint8_t *odr1;
volatile uint8_t *pcr;
volatile uint8_t *dscr;
volatile uint8_t *dscr2;
} reg;
#ifdef CONFIG_RENESAS_RX_EXTERNAL_INTERRUPT
const struct gpio_rx_irq_info *irq_info;
const size_t irq_info_size;
#endif
};
struct gpio_rx_data {
struct gpio_driver_data common;
#ifdef CONFIG_RENESAS_RX_EXTERNAL_INTERRUPT
sys_slist_t callbacks;
struct k_spinlock lock;
#endif
};
#ifdef CONFIG_RENESAS_RX_EXTERNAL_INTERRUPT
static const struct gpio_rx_irq_info *query_irq_info(const struct device *dev, uint32_t pin)
{
const struct gpio_rx_config *config = dev->config;
for (int i = 0; i < config->irq_info_size; i++) {
const struct gpio_rx_irq_info *info = &config->irq_info[i];
for (int j = 0; j < info->num; j++) {
if (info->pins[j] == pin) {
return info;
}
}
}
return NULL;
}
static void gpio_rx_callback_adapter(const struct device *dev, gpio_pin_t pin)
{
struct gpio_rx_data *data = dev->data;
gpio_fire_callbacks(&data->callbacks, dev, BIT(pin));
}
void mpc_set_irq(const struct device *dev, gpio_pin_t pin, bool set)
{
const struct gpio_rx_config *cfg = dev->config;
/* Enable writing to MPC registers. */
R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_MPC);
WRITE_BIT(*(cfg->pinmux + pin), PFS_BIT_ISEL, set);
R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_MPC);
}
#endif
static int gpio_rx_pin_configure(const struct device *dev, gpio_pin_t pin, gpio_flags_t flags)
{
const struct gpio_rx_config *cfg = dev->config;
struct rx_pinctrl_soc_pin pincfg;
memset(&pincfg, 0, sizeof(pincfg));
if (((flags & GPIO_INPUT) != 0U) && ((flags & GPIO_OUTPUT) != 0U)) {
return -ENOTSUP;
}
if ((flags & GPIO_PULL_DOWN) != 0U) {
return -ENOTSUP;
}
if (!IS_ENABLED(CONFIG_RENESAS_RX_EXTERNAL_INTERRUPT) && ((flags & GPIO_INT_ENABLE) != 0)) {
return -ENOTSUP;
}
pincfg.port_num = cfg->port_num;
pincfg.pin_num = pin;
/* Set pull-up if requested */
if ((flags & GPIO_PULL_UP) != 0) {
pincfg.cfg.bias_pull_up = 1;
}
/* Open drain (pins 0-3: odr0, pins 4-8: odr1) */
if ((flags & GPIO_LINE_OPEN_DRAIN) != 0) {
pincfg.cfg.drive_open_drain = 1;
}
/* Set to output */
if ((flags & GPIO_OUTPUT) != 0U) {
if ((flags & GPIO_OUTPUT_INIT_HIGH) != 0U) {
pincfg.cfg.output_high = 1;
}
pincfg.cfg.pin_mode = 0;
pincfg.cfg.output_enable = 1;
}
return pinctrl_configure_pins(&pincfg, 1, PINCTRL_REG_NONE);
}
static int gpio_rx_port_get_raw(const struct device *dev, uint32_t *value)
{
const struct gpio_rx_config *cfg = dev->config;
*value = *(cfg->reg.pidr);
return 0;
}
static int gpio_rx_port_set_masked_raw(const struct device *dev, gpio_port_pins_t mask,
gpio_port_value_t value)
{
const struct gpio_rx_config *cfg = dev->config;
*(cfg->reg.podr) = ((*cfg->reg.podr) & ~mask) | (mask & value);
return 0;
}
static int gpio_rx_port_set_bits_raw(const struct device *dev, gpio_port_pins_t pins)
{
const struct gpio_rx_config *cfg = dev->config;
*(cfg->reg.podr) |= pins;
return 0;
}
static int gpio_rx_port_clear_bits_raw(const struct device *dev, gpio_port_pins_t pins)
{
const struct gpio_rx_config *cfg = dev->config;
*(cfg->reg.podr) &= ~pins;
return 0;
}
static int gpio_rx_port_toggle_bits(const struct device *dev, gpio_port_pins_t pins)
{
const struct gpio_rx_config *cfg = dev->config;
*(cfg->reg.podr) = *(cfg->reg.podr) ^ pins;
return 0;
}
#ifdef CONFIG_RENESAS_RX_EXTERNAL_INTERRUPT
static int gpio_rx_pin_interrupt_configure(const struct device *dev, gpio_pin_t pin,
enum gpio_int_mode mode, enum gpio_int_trig trig)
{
const struct gpio_rx_config *cfg = dev->config;
struct gpio_rx_data *data = dev->data;
int ret = 0;
k_spinlock_key_t key;
const struct gpio_rx_irq_info *irq_info = query_irq_info(dev, pin);
if (irq_info == NULL) {
return -EINVAL;
}
if (!device_is_ready(irq_info->port_irq)) {
return -EWOULDBLOCK;
}
key = k_spin_lock(&data->lock);
if ((mode & GPIO_INT_ENABLE) != 0) {
struct gpio_rx_callback callback = {
.port = (struct device *)dev,
.port_num = cfg->port_num,
.pin = pin,
.mode = mode,
.trigger = trig,
.isr = gpio_rx_callback_adapter,
};
ret = gpio_rx_interrupt_set(irq_info->port_irq, &callback);
if (ret < 0) {
goto end;
}
mpc_set_irq(dev, pin, 1);
}
if ((mode & GPIO_INT_DISABLE) != 0) {
gpio_rx_interrupt_unset(irq_info->port_irq, cfg->port_num, pin);
mpc_set_irq(dev, pin, 0);
}
end:
k_spin_unlock(&data->lock, key);
return ret;
}
static int gpio_rx_manage_callback(const struct device *dev, struct gpio_callback *callback,
bool set)
{
struct gpio_rx_data *data = dev->data;
return gpio_manage_callback(&data->callbacks, callback, set);
}
#endif
static DEVICE_API(gpio, gpio_rx_drv_api_funcs) = {
.pin_configure = gpio_rx_pin_configure,
.port_get_raw = gpio_rx_port_get_raw,
.port_set_masked_raw = gpio_rx_port_set_masked_raw,
.port_set_bits_raw = gpio_rx_port_set_bits_raw,
.port_clear_bits_raw = gpio_rx_port_clear_bits_raw,
.port_toggle_bits = gpio_rx_port_toggle_bits,
#ifdef CONFIG_RENESAS_RX_EXTERNAL_INTERRUPT
.pin_interrupt_configure = gpio_rx_pin_interrupt_configure,
.manage_callback = gpio_rx_manage_callback,
#endif
};
#define GPIO_RX_PINS_NAME(n, p, i) CONCAT(DT_STRING_TOKEN_BY_IDX(n, p, i), _pins)
#define GPIO_RX_DO_NOTHING
#define GPIO_RX_DECL_PINS(n, p, i) \
const uint8_t CONCAT(n, ___pins##i[]) = {DT_FOREACH_PROP_ELEM_SEP( \
n, GPIO_RX_PINS_NAME(n, p, i), DT_PROP_BY_IDX, (, GPIO_RX_DO_NOTHING))};
#ifndef CONFIG_RENESAS_RX_EXTERNAL_INTERRUPT
#define GPIO_RX_IRQ_INFO(n, p, i)
#define GPIO_RX_IRQ_STRUCT_INIT(suffix)
#else
#define GPIO_RX_IRQ_INFO(n, p, i) \
{ \
.port_irq = DEVICE_DT_GET_OR_NULL(DT_PHANDLE_BY_IDX(n, port_irqs, i)), \
.pins = CONCAT(n, ___pins##i), \
.num = ARRAY_SIZE(CONCAT(n, ___pins##i)), \
},
#define GPIO_RX_IRQ_STRUCT_INIT(suffix) \
.irq_info = gpio_rx_irq_info_##suffix, \
.irq_info_size = DT_PROP_LEN_OR(DT_NODELABEL(ioport##suffix), port_irq_names, 0),
#endif
#define GPIO_RX_PORT_IRQ_DECL(node) \
COND_CODE_1(DT_NODE_HAS_PROP(node, port_irq_names), \
(DT_FOREACH_PROP_ELEM(node, port_irq_names, GPIO_RX_DECL_PINS)), ())
#define GPIO_RX_PORT_IRQ_ELEM(node) \
COND_CODE_1(DT_NODE_HAS_PROP(node, port_irq_names), \
(DT_FOREACH_PROP_ELEM(node, port_irq_names, GPIO_RX_IRQ_INFO)), ())
#define GPIO_DEVICE_INIT(node, port_number, suffix, addr) \
GPIO_RX_PORT_IRQ_DECL(node); \
struct gpio_rx_irq_info gpio_rx_irq_info_##suffix[] = {GPIO_RX_PORT_IRQ_ELEM(node)}; \
static const struct gpio_rx_config gpio_rx_config_##suffix = { \
.common = {.port_pin_mask = GPIO_PORT_PIN_MASK_FROM_NGPIOS(8U)}, \
.port_num = port_number, \
.pinmux = (uint8_t *)DT_REG_ADDR(DT_PROP(node, pinmux)), \
.reg = \
{ \
.pdr = (uint8_t *)DT_REG_ADDR_BY_NAME(node, PDR), \
.podr = (uint8_t *)DT_REG_ADDR_BY_NAME(node, PODR), \
.pidr = (uint8_t *)DT_REG_ADDR_BY_NAME(node, PIDR), \
.pmr = (uint8_t *)DT_REG_ADDR_BY_NAME(node, PMR), \
.odr0 = (uint8_t *)DT_REG_ADDR_BY_NAME_OR(node, ODR0, NULL), \
.odr1 = (uint8_t *)DT_REG_ADDR_BY_NAME_OR(node, ODR1, NULL), \
.pcr = (uint8_t *)DT_REG_ADDR_BY_NAME(node, PCR), \
}, \
GPIO_RX_IRQ_STRUCT_INIT(suffix)}; \
static struct gpio_rx_data gpio_rx_data_##suffix; \
DEVICE_DT_DEFINE(node, NULL, NULL, &gpio_rx_data_##suffix, &gpio_rx_config_##suffix, \
PRE_KERNEL_1, CONFIG_GPIO_INIT_PRIORITY, &gpio_rx_drv_api_funcs)
#define GPIO_DEVICE_INIT_RX(suffix) \
GPIO_DEVICE_INIT(DT_NODELABEL(ioport##suffix), \
DT_PROP(DT_NODELABEL(ioport##suffix), port), suffix, \
DT_REG_ADDR(DT_NODELABEL(ioport##suffix)))
#define GPIO_DEVICE_INIT_RX_IF_OKAY(suffix) \
COND_CODE_1(DT_NODE_HAS_STATUS(DT_NODELABEL(ioport##suffix), okay), \
(GPIO_DEVICE_INIT_RX(suffix)), ())
GPIO_DEVICE_INIT_RX_IF_OKAY(0);
GPIO_DEVICE_INIT_RX_IF_OKAY(1);
GPIO_DEVICE_INIT_RX_IF_OKAY(2);
GPIO_DEVICE_INIT_RX_IF_OKAY(3);
GPIO_DEVICE_INIT_RX_IF_OKAY(4);
GPIO_DEVICE_INIT_RX_IF_OKAY(5);
GPIO_DEVICE_INIT_RX_IF_OKAY(a);
GPIO_DEVICE_INIT_RX_IF_OKAY(b);
GPIO_DEVICE_INIT_RX_IF_OKAY(c);
GPIO_DEVICE_INIT_RX_IF_OKAY(d);
GPIO_DEVICE_INIT_RX_IF_OKAY(e);
GPIO_DEVICE_INIT_RX_IF_OKAY(h);
GPIO_DEVICE_INIT_RX_IF_OKAY(j);