mirror of
https://github.com/zephyrproject-rtos/zephyr
synced 2025-08-03 13:55:20 +00:00
integrate EXTI driver Co-authored-by: Mathieu CHOPLAIN <mathieu.choplain@st.com> Signed-off-by: Alexander Kozhinov <ak.alexander.kozhinov@gmail.com>
1137 lines
32 KiB
C
1137 lines
32 KiB
C
/*
|
|
* Copyright (c) 2023 Prevas A/S
|
|
* Copyright (c) 2023 Syslinbit
|
|
* Copyright (c) 2024 STMicroelectronics
|
|
* Copyright (c) 2025 Alexander Kozhinov <ak.alexander.kozhinov@gmail.com>
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
*/
|
|
|
|
#define DT_DRV_COMPAT st_stm32_rtc
|
|
|
|
#include <errno.h>
|
|
#include <zephyr/device.h>
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/init.h>
|
|
#include <zephyr/devicetree.h>
|
|
#include <zephyr/spinlock.h>
|
|
#include <zephyr/drivers/rtc.h>
|
|
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
|
|
#include <zephyr/drivers/clock_control.h>
|
|
#include <zephyr/sys/util.h>
|
|
#include <soc.h>
|
|
#include <stm32_ll_pwr.h>
|
|
#include <stm32_ll_rcc.h>
|
|
#include <stm32_ll_rtc.h>
|
|
#ifdef CONFIG_RTC_ALARM
|
|
#include <zephyr/drivers/interrupt_controller/intc_exti_stm32.h>
|
|
#endif /* CONFIG_RTC_ALARM */
|
|
|
|
#include <zephyr/logging/log.h>
|
|
#ifdef CONFIG_RTC_ALARM
|
|
#include <zephyr/irq.h>
|
|
#endif /* CONFIG_RTC_ALARM */
|
|
|
|
#include <stm32_backup_domain.h>
|
|
#include <stm32_hsem.h>
|
|
|
|
#include <stdbool.h>
|
|
#include "rtc_utils.h"
|
|
|
|
#include "rtc_ll_stm32.h"
|
|
|
|
LOG_MODULE_REGISTER(rtc_stm32, CONFIG_RTC_LOG_LEVEL);
|
|
|
|
#if (defined(CONFIG_SOC_SERIES_STM32L1X) && !defined(RTC_SUBSECOND_SUPPORT)) \
|
|
|| defined(CONFIG_SOC_SERIES_STM32F2X)
|
|
/* subsecond counting is not supported by some STM32L1x MCUs (Cat.1) & by STM32F2x SoC series */
|
|
#define HW_SUBSECOND_SUPPORT (0)
|
|
#else
|
|
#define HW_SUBSECOND_SUPPORT (1)
|
|
#endif
|
|
|
|
/* RTC start time: 1st, Jan, 2000 */
|
|
#define RTC_YEAR_REF 2000
|
|
/* struct tm start time: 1st, Jan, 1900 */
|
|
#define TM_YEAR_REF 1900
|
|
|
|
/* Convert part per billion calibration value to a number of clock pulses added or removed each
|
|
* 2^20 clock cycles so it is suitable for the CALR register fields
|
|
*
|
|
* nb_pulses = ppb * 2^20 / 10^9 = ppb * 2^11 / 5^9 = ppb * 2048 / 1953125
|
|
*/
|
|
#define PPB_TO_NB_PULSES(ppb) DIV_ROUND_CLOSEST((ppb) * 2048, 1953125)
|
|
|
|
/* Convert CALR register value (number of clock pulses added or removed each 2^20 clock cycles)
|
|
* to part ber billion calibration value
|
|
*
|
|
* ppb = nb_pulses * 10^9 / 2^20 = nb_pulses * 5^9 / 2^11 = nb_pulses * 1953125 / 2048
|
|
*/
|
|
#define NB_PULSES_TO_PPB(pulses) DIV_ROUND_CLOSEST((pulses) * 1953125, 2048)
|
|
|
|
/* CALP field can only be 512 or 0 as in reality CALP is a single bit field representing 512 pulses
|
|
* added every 2^20 clock cycles
|
|
*/
|
|
#define MAX_CALP (512)
|
|
#define MAX_CALM (511)
|
|
|
|
#define MAX_PPB NB_PULSES_TO_PPB(MAX_CALP)
|
|
#define MIN_PPB -NB_PULSES_TO_PPB(MAX_CALM)
|
|
|
|
/* Timeout in microseconds used to wait for flags */
|
|
#define RTC_TIMEOUT 1000000
|
|
|
|
#ifdef STM32_RTC_ALARM_ENABLED
|
|
#define RTC_STM32_ALARMS_COUNT DT_INST_PROP(0, alarms_count)
|
|
|
|
#define RTC_STM32_ALRM_A 0U
|
|
#define RTC_STM32_ALRM_B 1U
|
|
|
|
/* Zephyr mask supported by RTC device, values from RTC_ALARM_TIME_MASK */
|
|
#define RTC_STM32_SUPPORTED_ALARM_FIELDS \
|
|
(RTC_ALARM_TIME_MASK_SECOND | RTC_ALARM_TIME_MASK_MINUTE \
|
|
| RTC_ALARM_TIME_MASK_HOUR | RTC_ALARM_TIME_MASK_WEEKDAY \
|
|
| RTC_ALARM_TIME_MASK_MONTHDAY)
|
|
|
|
#define RTC_STM32_EXTI_LINE_NUM DT_INST_PROP_OR(0, alrm_exti_line, 0)
|
|
|
|
#endif /* STM32_RTC_ALARM_ENABLED */
|
|
|
|
struct rtc_stm32_config {
|
|
uint32_t async_prescaler;
|
|
uint32_t sync_prescaler;
|
|
const struct stm32_pclken *pclken;
|
|
#if DT_INST_NODE_HAS_PROP(0, calib_out_freq)
|
|
uint32_t cal_out_freq;
|
|
#endif
|
|
#if DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_HSE
|
|
uint32_t hse_prescaler;
|
|
#endif
|
|
};
|
|
|
|
#ifdef STM32_RTC_ALARM_ENABLED
|
|
struct rtc_stm32_alrm {
|
|
LL_RTC_AlarmTypeDef ll_rtc_alrm;
|
|
/* user-defined alarm mask, values from RTC_ALARM_TIME_MASK */
|
|
uint16_t user_mask;
|
|
rtc_alarm_callback user_callback;
|
|
void *user_data;
|
|
bool is_pending;
|
|
};
|
|
#endif /* STM32_RTC_ALARM_ENABLED */
|
|
|
|
struct rtc_stm32_data {
|
|
struct k_spinlock lock;
|
|
#ifdef STM32_RTC_ALARM_ENABLED
|
|
struct rtc_stm32_alrm rtc_alrm_a;
|
|
struct rtc_stm32_alrm rtc_alrm_b;
|
|
#endif /* STM32_RTC_ALARM_ENABLED */
|
|
};
|
|
|
|
#ifdef STM32_RTC_ALARM_ENABLED
|
|
|
|
static inline void exti_enable_rtc_alarm_it(uint32_t line_num)
|
|
{
|
|
#if defined(CONFIG_SOC_SERIES_STM32U5X) || defined(CONFIG_SOC_SERIES_STM32WBAX)
|
|
/* in STM32U5 & STM32WBAX series, RTC Alarm event is not routed to EXTI */
|
|
#else
|
|
int ret;
|
|
|
|
ret = stm32_exti_enable(line_num, STM32_EXTI_TRIG_RISING, STM32_EXTI_MODE_IT);
|
|
if (ret != 0) {
|
|
LOG_ERR("Failed to enable EXTI line number %d (error %d)", line_num, ret);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static inline void exti_clear_rtc_alarm_flag(uint32_t line_num)
|
|
{
|
|
#if defined(CONFIG_SOC_SERIES_STM32U5X) || defined(CONFIG_SOC_SERIES_STM32WBAX)
|
|
/* in STM32U5 & STM32WBAX series, RTC Alarm (EXTI event) is not routed to EXTI */
|
|
#else
|
|
if (stm32_exti_is_pending(line_num)) {
|
|
stm32_exti_clear_pending(line_num);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#endif /* STM32_RTC_ALARM_ENABLED */
|
|
|
|
static int rtc_stm32_configure(const struct device *dev)
|
|
{
|
|
const struct rtc_stm32_config *cfg = dev->config;
|
|
|
|
int err = 0;
|
|
|
|
uint32_t hour_format = LL_RTC_GetHourFormat(RTC);
|
|
uint32_t sync_prescaler = LL_RTC_GetSynchPrescaler(RTC);
|
|
uint32_t async_prescaler = LL_RTC_GetAsynchPrescaler(RTC);
|
|
|
|
LL_RTC_DisableWriteProtection(RTC);
|
|
|
|
/* configuration process requires to stop the RTC counter so do it
|
|
* only if needed to avoid inducing time drift at each reset
|
|
*/
|
|
if ((hour_format != LL_RTC_HOURFORMAT_24HOUR) ||
|
|
(sync_prescaler != cfg->sync_prescaler) ||
|
|
(async_prescaler != cfg->async_prescaler)) {
|
|
ErrorStatus status = LL_RTC_EnterInitMode(RTC);
|
|
|
|
if (status == SUCCESS) {
|
|
LL_RTC_SetHourFormat(RTC, LL_RTC_HOURFORMAT_24HOUR);
|
|
LL_RTC_SetSynchPrescaler(RTC, cfg->sync_prescaler);
|
|
LL_RTC_SetAsynchPrescaler(RTC, cfg->async_prescaler);
|
|
} else {
|
|
err = -EIO;
|
|
}
|
|
|
|
LL_RTC_DisableInitMode(RTC);
|
|
}
|
|
|
|
#if DT_INST_NODE_HAS_PROP(0, calib_out_freq)
|
|
LL_RTC_CAL_SetOutputFreq(RTC, cfg->cal_out_freq);
|
|
#else
|
|
LL_RTC_CAL_SetOutputFreq(RTC, LL_RTC_CALIB_OUTPUT_NONE);
|
|
#endif
|
|
|
|
#ifdef RTC_CR_BYPSHAD
|
|
LL_RTC_EnableShadowRegBypass(RTC);
|
|
#endif /* RTC_CR_BYPSHAD */
|
|
|
|
LL_RTC_EnableWriteProtection(RTC);
|
|
|
|
return err;
|
|
}
|
|
|
|
#ifdef STM32_RTC_ALARM_ENABLED
|
|
static inline ErrorStatus rtc_stm32_init_alarm(RTC_TypeDef *rtc, uint32_t format,
|
|
LL_RTC_AlarmTypeDef *ll_alarm_struct, uint16_t id)
|
|
{
|
|
ll_alarm_struct->AlarmDateWeekDaySel = RTC_STM32_ALRM_DATEWEEKDAYSEL_DATE;
|
|
/*
|
|
* RTC write protection is disabled & enabled again inside LL_RTC_ALMx_Init functions
|
|
* The LL_RTC_ALMx_Init does convert bin2bcd by itself
|
|
*/
|
|
if (id == RTC_STM32_ALRM_A) {
|
|
return LL_RTC_ALMA_Init(rtc, format, ll_alarm_struct);
|
|
}
|
|
#if RTC_STM32_ALARMS_COUNT > 1
|
|
if (id == RTC_STM32_ALRM_B) {
|
|
return LL_RTC_ALMB_Init(rtc, format, ll_alarm_struct);
|
|
}
|
|
#endif /* RTC_STM32_ALARMS_COUNT > 1 */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void rtc_stm32_clear_alarm_flag(RTC_TypeDef *rtc, uint16_t id)
|
|
{
|
|
if (id == RTC_STM32_ALRM_A) {
|
|
LL_RTC_ClearFlag_ALRA(rtc);
|
|
return;
|
|
}
|
|
#if RTC_STM32_ALARMS_COUNT > 1
|
|
if (id == RTC_STM32_ALRM_B) {
|
|
LL_RTC_ClearFlag_ALRB(rtc);
|
|
}
|
|
#endif /* RTC_STM32_ALARMS_COUNT > 1 */
|
|
}
|
|
|
|
static inline uint32_t rtc_stm32_is_active_alarm(RTC_TypeDef *rtc, uint16_t id)
|
|
{
|
|
if (id == RTC_STM32_ALRM_A) {
|
|
return LL_RTC_IsActiveFlag_ALRA(rtc);
|
|
}
|
|
#if RTC_STM32_ALARMS_COUNT > 1
|
|
if (id == RTC_STM32_ALRM_B) {
|
|
return LL_RTC_IsActiveFlag_ALRB(rtc);
|
|
}
|
|
#endif /* RTC_STM32_ALARMS_COUNT > 1 */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void rtc_stm32_enable_interrupt_alarm(RTC_TypeDef *rtc, uint16_t id)
|
|
{
|
|
if (id == RTC_STM32_ALRM_A) {
|
|
LL_RTC_EnableIT_ALRA(rtc);
|
|
return;
|
|
}
|
|
#if RTC_STM32_ALARMS_COUNT > 1
|
|
if (id == RTC_STM32_ALRM_B) {
|
|
LL_RTC_EnableIT_ALRB(rtc);
|
|
}
|
|
#endif /* RTC_STM32_ALARMS_COUNT > 1 */
|
|
}
|
|
|
|
static inline void rtc_stm32_disable_interrupt_alarm(RTC_TypeDef *rtc, uint16_t id)
|
|
{
|
|
if (id == RTC_STM32_ALRM_A) {
|
|
LL_RTC_DisableIT_ALRA(rtc);
|
|
return;
|
|
}
|
|
#if RTC_STM32_ALARMS_COUNT > 1
|
|
if (id == RTC_STM32_ALRM_B) {
|
|
LL_RTC_DisableIT_ALRB(rtc);
|
|
}
|
|
#endif /* RTC_STM32_ALARMS_COUNT > 1 */
|
|
}
|
|
|
|
static inline void rtc_stm32_enable_alarm(RTC_TypeDef *rtc, uint16_t id)
|
|
{
|
|
if (id == RTC_STM32_ALRM_A) {
|
|
LL_RTC_ALMA_Enable(rtc);
|
|
return;
|
|
}
|
|
#if RTC_STM32_ALARMS_COUNT > 1
|
|
if (id == RTC_STM32_ALRM_B) {
|
|
LL_RTC_ALMB_Enable(rtc);
|
|
}
|
|
#endif /* RTC_STM32_ALARMS_COUNT > 1 */
|
|
}
|
|
|
|
static inline void rtc_stm32_disable_alarm(RTC_TypeDef *rtc, uint16_t id)
|
|
{
|
|
if (id == RTC_STM32_ALRM_A) {
|
|
LL_RTC_ALMA_Disable(rtc);
|
|
return;
|
|
}
|
|
#if RTC_STM32_ALARMS_COUNT > 1
|
|
if (id == RTC_STM32_ALRM_B) {
|
|
LL_RTC_ALMB_Disable(rtc);
|
|
}
|
|
#endif /* RTC_STM32_ALARMS_COUNT > 1 */
|
|
}
|
|
|
|
void rtc_stm32_isr(const struct device *dev)
|
|
{
|
|
struct rtc_stm32_data *data = dev->data;
|
|
struct rtc_stm32_alrm *p_rtc_alrm;
|
|
int id = 0;
|
|
|
|
for (id = 0; id < RTC_STM32_ALARMS_COUNT; id++) {
|
|
if (rtc_stm32_is_active_alarm(RTC, (uint16_t)id) != 0) {
|
|
stm32_backup_domain_enable_access();
|
|
LL_RTC_DisableWriteProtection(RTC);
|
|
rtc_stm32_clear_alarm_flag(RTC, (uint16_t)id);
|
|
LL_RTC_EnableWriteProtection(RTC);
|
|
stm32_backup_domain_disable_access();
|
|
|
|
if (id == RTC_STM32_ALRM_A) {
|
|
p_rtc_alrm = &(data->rtc_alrm_a);
|
|
} else {
|
|
p_rtc_alrm = &(data->rtc_alrm_b);
|
|
}
|
|
|
|
p_rtc_alrm->is_pending = true;
|
|
|
|
if (p_rtc_alrm->user_callback != NULL) {
|
|
p_rtc_alrm->user_callback(dev, (uint16_t)id, p_rtc_alrm->user_data);
|
|
}
|
|
}
|
|
}
|
|
|
|
exti_clear_rtc_alarm_flag(RTC_STM32_EXTI_LINE_NUM);
|
|
}
|
|
|
|
static void rtc_stm32_irq_config(const struct device *dev)
|
|
{
|
|
IRQ_CONNECT(DT_INST_IRQN(0),
|
|
DT_INST_IRQ(0, priority),
|
|
rtc_stm32_isr, DEVICE_DT_INST_GET(0), 0);
|
|
irq_enable(DT_INST_IRQN(0));
|
|
}
|
|
#endif /* STM32_RTC_ALARM_ENABLED */
|
|
|
|
static int rtc_stm32_init(const struct device *dev)
|
|
{
|
|
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
|
|
const struct rtc_stm32_config *cfg = dev->config;
|
|
__maybe_unused struct rtc_stm32_data *data = dev->data;
|
|
|
|
int err = 0;
|
|
|
|
if (!device_is_ready(clk)) {
|
|
LOG_ERR("clock control device not ready");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Enable RTC bus clock */
|
|
if (clock_control_on(clk, (clock_control_subsys_t)&cfg->pclken[0]) != 0) {
|
|
LOG_ERR("clock op failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32WB0X)
|
|
/**
|
|
* The STM32WB0 series has no bit for clock gating of RTC's APB
|
|
* interface. On the other hand, the RTCEN bit that would control
|
|
* whether the RTC IP is clock gated or not exists, and has been
|
|
* placed in APB0ENR. The call to clock_control_on() that just
|
|
* completed should have set this bit to 1.
|
|
*
|
|
* However, according to RefMan, the software must wait two slow
|
|
* clock cycles before the IP is actually usable, due to clock
|
|
* resynchronization delays. Sadly, there is no hardware register
|
|
* we can poll to wait until RTC is ready...
|
|
*
|
|
* In worst case scenario of 24 kHz LSI, we have to wait for:
|
|
* tREADY = (2 cycles / 24'000 Hz) ≅ 84µs
|
|
*
|
|
* Spin until that much time has elapsed, and RTC should be up.
|
|
*
|
|
* N.B.: we can't use k_busy_wait because it uses the SysTick
|
|
* as time base, but SysTick is initialized after the RTC...
|
|
*/
|
|
const uint32_t cycles_to_waste =
|
|
84 * (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / USEC_PER_SEC);
|
|
volatile uint32_t i = cycles_to_waste;
|
|
|
|
while (--i > 0) {
|
|
/* Do nothing - loop itself burns enough cycles */
|
|
}
|
|
#endif /* CONFIG_SOC_SERIES_STM32WB0X */
|
|
|
|
stm32_backup_domain_enable_access();
|
|
|
|
#if DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_HSE
|
|
/* Must be configured before selecting the RTC clock source */
|
|
LL_RCC_SetRTC_HSEPrescaler(cfg->hse_prescaler);
|
|
#endif
|
|
/* Enable RTC clock source */
|
|
if (cfg->pclken[1].enr != NO_SEL) {
|
|
err = clock_control_configure(clk, (clock_control_subsys_t)&cfg->pclken[1], NULL);
|
|
|
|
if (err < 0) {
|
|
stm32_backup_domain_disable_access();
|
|
LOG_ERR("clock configure failed\n");
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* On STM32WBAX series, there is no bit in BCDR register to enable RTC.
|
|
* Enabling RTC is done directly via the RCC APB register bit.
|
|
* On STM32WB0 series, LL_RCC_EnableRTC is not provided by STM32CubeWB0,
|
|
* but RTC IP clock has already been turned on - skip the call as well.
|
|
*/
|
|
#if !defined(CONFIG_SOC_SERIES_STM32WBAX) && !defined(CONFIG_SOC_SERIES_STM32WB0X)
|
|
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
|
|
|
|
LL_RCC_EnableRTC();
|
|
|
|
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
|
|
#endif /* CONFIG_SOC_SERIES_STM32WBAX */
|
|
|
|
err = rtc_stm32_configure(dev);
|
|
|
|
stm32_backup_domain_disable_access();
|
|
|
|
#ifdef STM32_RTC_ALARM_ENABLED
|
|
rtc_stm32_irq_config(dev);
|
|
|
|
exti_enable_rtc_alarm_it(RTC_STM32_EXTI_LINE_NUM);
|
|
|
|
K_SPINLOCK(&data->lock) {
|
|
memset(&(data->rtc_alrm_a), 0, sizeof(struct rtc_stm32_alrm));
|
|
memset(&(data->rtc_alrm_b), 0, sizeof(struct rtc_stm32_alrm));
|
|
}
|
|
#endif /* CONFIG_RTC_ALARM */
|
|
|
|
return err;
|
|
}
|
|
|
|
static int rtc_stm32_set_time(const struct device *dev, const struct rtc_time *timeptr)
|
|
{
|
|
struct rtc_stm32_data *data = dev->data;
|
|
LL_RTC_TimeTypeDef rtc_time;
|
|
LL_RTC_DateTypeDef rtc_date;
|
|
uint32_t real_year = timeptr->tm_year + TM_YEAR_REF;
|
|
|
|
if (real_year < RTC_YEAR_REF) {
|
|
/* RTC does not support years before 2000 */
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (timeptr->tm_wday == -1) {
|
|
/* day of the week is expected */
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Enter Init mode inside the LL_RTC_Time and Date Init functions */
|
|
rtc_time.Hours = bin2bcd(timeptr->tm_hour);
|
|
rtc_time.Minutes = bin2bcd(timeptr->tm_min);
|
|
rtc_time.Seconds = bin2bcd(timeptr->tm_sec);
|
|
|
|
/* Set Date after Time to be sure the DR is correctly updated on stm32F2 serie. */
|
|
rtc_date.Year = bin2bcd((real_year - RTC_YEAR_REF));
|
|
rtc_date.Month = bin2bcd((timeptr->tm_mon + 1));
|
|
rtc_date.Day = bin2bcd(timeptr->tm_mday);
|
|
rtc_date.WeekDay = ((timeptr->tm_wday == 0) ? (LL_RTC_WEEKDAY_SUNDAY) : (timeptr->tm_wday));
|
|
/* WeekDay sunday (tm_wday = 0) is not represented by the same value in hardware,
|
|
* all the other values are consistent with what is expected by hardware.
|
|
*/
|
|
|
|
LOG_DBG("Setting clock");
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&data->lock);
|
|
|
|
stm32_backup_domain_enable_access();
|
|
|
|
LL_RTC_TIME_Init(RTC, LL_RTC_FORMAT_BCD, &rtc_time);
|
|
LL_RTC_DATE_Init(RTC, LL_RTC_FORMAT_BCD, &rtc_date);
|
|
|
|
stm32_backup_domain_disable_access();
|
|
|
|
#ifdef CONFIG_SOC_SERIES_STM32F2X
|
|
/*
|
|
* Because stm32F2 serie has no shadow registers,
|
|
* wait until TR and DR registers are synchronised : flag RS
|
|
*/
|
|
while (LL_RTC_IsActiveFlag_RS(RTC) != 1) {
|
|
;
|
|
}
|
|
#endif /* CONFIG_SOC_SERIES_STM32F2X */
|
|
|
|
LOG_DBG("Calendar set : %d/%d/%d - %dh%dm%ds",
|
|
LL_RTC_DATE_GetDay(RTC),
|
|
LL_RTC_DATE_GetMonth(RTC),
|
|
LL_RTC_DATE_GetYear(RTC),
|
|
LL_RTC_TIME_GetHour(RTC),
|
|
LL_RTC_TIME_GetMinute(RTC),
|
|
LL_RTC_TIME_GetSecond(RTC)
|
|
);
|
|
|
|
k_spin_unlock(&data->lock, key);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rtc_stm32_get_time(const struct device *dev, struct rtc_time *timeptr)
|
|
{
|
|
struct rtc_stm32_data *data = dev->data;
|
|
|
|
uint32_t rtc_date, rtc_time;
|
|
|
|
#if HW_SUBSECOND_SUPPORT
|
|
const struct rtc_stm32_config *cfg = dev->config;
|
|
uint32_t rtc_subsecond;
|
|
#endif /* HW_SUBSECOND_SUPPORT */
|
|
|
|
if (timeptr == NULL) {
|
|
LOG_ERR("NULL rtc_time pointer");
|
|
return -EINVAL;
|
|
}
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&data->lock);
|
|
|
|
if (!LL_RTC_IsActiveFlag_INITS(RTC)) {
|
|
/* INITS flag is set when the calendar has been initialiazed. This flag is
|
|
* reset only on backup domain reset, so it can be read after a system
|
|
* reset to check if the calendar has been initialized.
|
|
*/
|
|
k_spin_unlock(&data->lock, key);
|
|
return -ENODATA;
|
|
}
|
|
|
|
do {
|
|
/* read date, time and subseconds and relaunch if a day increment occurred
|
|
* while doing so as it will result in an erroneous result otherwise
|
|
*/
|
|
rtc_date = LL_RTC_DATE_Get(RTC);
|
|
do {
|
|
/* read time and subseconds and relaunch if a second increment occurred
|
|
* while doing so as it will result in an erroneous result otherwise
|
|
*/
|
|
rtc_time = LL_RTC_TIME_Get(RTC);
|
|
#if HW_SUBSECOND_SUPPORT
|
|
rtc_subsecond = LL_RTC_TIME_GetSubSecond(RTC);
|
|
#endif /* HW_SUBSECOND_SUPPORT */
|
|
} while (rtc_time != LL_RTC_TIME_Get(RTC));
|
|
} while (rtc_date != LL_RTC_DATE_Get(RTC));
|
|
|
|
k_spin_unlock(&data->lock, key);
|
|
|
|
/* tm_year is the value since 1900 and Rtc year is from 2000 */
|
|
timeptr->tm_year = bcd2bin(__LL_RTC_GET_YEAR(rtc_date)) + (RTC_YEAR_REF - TM_YEAR_REF);
|
|
/* tm_mon allowed values are 0-11 */
|
|
timeptr->tm_mon = bcd2bin(__LL_RTC_GET_MONTH(rtc_date)) - 1;
|
|
timeptr->tm_mday = bcd2bin(__LL_RTC_GET_DAY(rtc_date));
|
|
|
|
int hw_wday = __LL_RTC_GET_WEEKDAY(rtc_date);
|
|
|
|
if (hw_wday == LL_RTC_WEEKDAY_SUNDAY) {
|
|
/* LL_RTC_WEEKDAY_SUNDAY = 7 but a 0 is expected in tm_wday for sunday */
|
|
timeptr->tm_wday = 0;
|
|
} else {
|
|
/* all other values are consistent between hardware and rtc_time structure */
|
|
timeptr->tm_wday = hw_wday;
|
|
}
|
|
|
|
timeptr->tm_hour = bcd2bin(__LL_RTC_GET_HOUR(rtc_time));
|
|
timeptr->tm_min = bcd2bin(__LL_RTC_GET_MINUTE(rtc_time));
|
|
timeptr->tm_sec = bcd2bin(__LL_RTC_GET_SECOND(rtc_time));
|
|
|
|
#if HW_SUBSECOND_SUPPORT
|
|
uint64_t temp = ((uint64_t)(cfg->sync_prescaler - rtc_subsecond)) * 1000000000L;
|
|
|
|
timeptr->tm_nsec = temp / (cfg->sync_prescaler + 1);
|
|
#else
|
|
timeptr->tm_nsec = 0;
|
|
#endif
|
|
/* unknown values */
|
|
timeptr->tm_yday = -1;
|
|
timeptr->tm_isdst = -1;
|
|
|
|
/* __LL_RTC_GET_YEAR(rtc_date)is the real year (from 2000) */
|
|
LOG_DBG("Calendar get : %d/%d/%d - %dh%dm%ds",
|
|
timeptr->tm_mday,
|
|
timeptr->tm_mon,
|
|
__LL_RTC_GET_YEAR(rtc_date),
|
|
timeptr->tm_hour,
|
|
timeptr->tm_min,
|
|
timeptr->tm_sec);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef STM32_RTC_ALARM_ENABLED
|
|
static void rtc_stm32_init_ll_alrm_struct(LL_RTC_AlarmTypeDef *p_rtc_alarm,
|
|
const struct rtc_time *timeptr, uint16_t mask)
|
|
{
|
|
LL_RTC_TimeTypeDef *p_rtc_alrm_time = &(p_rtc_alarm->AlarmTime);
|
|
uint32_t ll_mask = 0;
|
|
|
|
/*
|
|
* STM32 RTC Alarm LL mask should be set for all fields beyond the broadest one
|
|
* that's being matched with RTC calendar to trigger alarm periodically,
|
|
* the opposite of Zephyr RTC Alarm mask which is set for active fields.
|
|
*/
|
|
ll_mask = RTC_STM32_ALRM_MASK_ALL;
|
|
|
|
if (mask & RTC_ALARM_TIME_MASK_SECOND) {
|
|
ll_mask &= ~RTC_STM32_ALRM_MASK_SECONDS;
|
|
p_rtc_alrm_time->Seconds = bin2bcd(timeptr->tm_sec);
|
|
}
|
|
|
|
if (mask & RTC_ALARM_TIME_MASK_MINUTE) {
|
|
ll_mask &= ~RTC_STM32_ALRM_MASK_MINUTES;
|
|
p_rtc_alrm_time->Minutes = bin2bcd(timeptr->tm_min);
|
|
}
|
|
|
|
if (mask & RTC_ALARM_TIME_MASK_HOUR) {
|
|
ll_mask &= ~RTC_STM32_ALRM_MASK_HOURS;
|
|
p_rtc_alrm_time->Hours = bin2bcd(timeptr->tm_hour);
|
|
}
|
|
|
|
if (mask & RTC_ALARM_TIME_MASK_WEEKDAY) {
|
|
/* the Alarm Mask field compares with the day of the week */
|
|
ll_mask &= ~RTC_STM32_ALRM_MASK_DATEWEEKDAY;
|
|
p_rtc_alarm->AlarmDateWeekDaySel = RTC_STM32_ALRM_DATEWEEKDAYSEL_WEEKDAY;
|
|
|
|
if (timeptr->tm_wday == 0) {
|
|
/* sunday (tm_wday = 0) is not represented by the same value in hardware */
|
|
p_rtc_alarm->AlarmDateWeekDay = LL_RTC_WEEKDAY_SUNDAY;
|
|
} else {
|
|
/* all the other values are consistent with what is expected by hardware */
|
|
p_rtc_alarm->AlarmDateWeekDay = bin2bcd(timeptr->tm_wday);
|
|
}
|
|
|
|
} else if (mask & RTC_ALARM_TIME_MASK_MONTHDAY) {
|
|
/* the Alarm compares with the day number & ignores the day of the week */
|
|
ll_mask &= ~RTC_STM32_ALRM_MASK_DATEWEEKDAY;
|
|
p_rtc_alarm->AlarmDateWeekDaySel = RTC_STM32_ALRM_DATEWEEKDAYSEL_DATE;
|
|
p_rtc_alarm->AlarmDateWeekDay = bin2bcd(timeptr->tm_mday);
|
|
}
|
|
|
|
p_rtc_alrm_time->TimeFormat = LL_RTC_TIME_FORMAT_AM_OR_24;
|
|
|
|
p_rtc_alarm->AlarmMask = ll_mask;
|
|
}
|
|
|
|
static inline void rtc_stm32_get_ll_alrm_time(uint16_t id, struct rtc_time *timeptr)
|
|
{
|
|
if (id == RTC_STM32_ALRM_A) {
|
|
timeptr->tm_sec = bcd2bin(LL_RTC_ALMA_GetSecond(RTC));
|
|
timeptr->tm_min = bcd2bin(LL_RTC_ALMA_GetMinute(RTC));
|
|
timeptr->tm_hour = bcd2bin(LL_RTC_ALMA_GetHour(RTC));
|
|
timeptr->tm_wday = bcd2bin(LL_RTC_ALMA_GetWeekDay(RTC));
|
|
timeptr->tm_mday = bcd2bin(LL_RTC_ALMA_GetDay(RTC));
|
|
return;
|
|
}
|
|
#if RTC_STM32_ALARMS_COUNT > 1
|
|
if (id == RTC_STM32_ALRM_B) {
|
|
timeptr->tm_sec = bcd2bin(LL_RTC_ALMB_GetSecond(RTC));
|
|
timeptr->tm_min = bcd2bin(LL_RTC_ALMB_GetMinute(RTC));
|
|
timeptr->tm_hour = bcd2bin(LL_RTC_ALMB_GetHour(RTC));
|
|
timeptr->tm_wday = bcd2bin(LL_RTC_ALMB_GetWeekDay(RTC));
|
|
timeptr->tm_mday = bcd2bin(LL_RTC_ALMB_GetDay(RTC));
|
|
}
|
|
#endif /* RTC_STM32_ALARMS_COUNT > 1 */
|
|
}
|
|
|
|
static inline uint16_t rtc_stm32_get_ll_alrm_mask(uint16_t id)
|
|
{
|
|
uint32_t ll_alarm_mask = 0;
|
|
uint16_t zephyr_alarm_mask = 0;
|
|
uint32_t week_day = 0;
|
|
|
|
/*
|
|
* STM32 RTC Alarm LL mask is set for all fields beyond the broadest one
|
|
* that's being matched with RTC calendar to trigger alarm periodically,
|
|
* the opposite of Zephyr RTC Alarm mask which is set for active fields.
|
|
*/
|
|
|
|
if (id == RTC_STM32_ALRM_A) {
|
|
ll_alarm_mask = LL_RTC_ALMA_GetMask(RTC);
|
|
}
|
|
|
|
#if RTC_STM32_ALARMS_COUNT > 1
|
|
if (id == RTC_STM32_ALRM_B) {
|
|
ll_alarm_mask = LL_RTC_ALMB_GetMask(RTC);
|
|
}
|
|
#endif /* RTC_STM32_ALARMS_COUNT > 1 */
|
|
|
|
if ((ll_alarm_mask & RTC_STM32_ALRM_MASK_SECONDS) == 0x0) {
|
|
zephyr_alarm_mask = RTC_ALARM_TIME_MASK_SECOND;
|
|
}
|
|
if ((ll_alarm_mask & RTC_STM32_ALRM_MASK_MINUTES) == 0x0) {
|
|
zephyr_alarm_mask |= RTC_ALARM_TIME_MASK_MINUTE;
|
|
}
|
|
if ((ll_alarm_mask & RTC_STM32_ALRM_MASK_HOURS) == 0x0) {
|
|
zephyr_alarm_mask |= RTC_ALARM_TIME_MASK_HOUR;
|
|
}
|
|
if ((ll_alarm_mask & RTC_STM32_ALRM_MASK_DATEWEEKDAY) == 0x0) {
|
|
if (id == RTC_STM32_ALRM_A) {
|
|
week_day = LL_RTC_ALMA_GetWeekDay(RTC);
|
|
}
|
|
#if RTC_STM32_ALARMS_COUNT > 1
|
|
if (id == RTC_STM32_ALRM_B) {
|
|
week_day = LL_RTC_ALMB_GetWeekDay(RTC);
|
|
}
|
|
#endif /* RTC_STM32_ALARMS_COUNT > 1 */
|
|
if (week_day) {
|
|
zephyr_alarm_mask |= RTC_ALARM_TIME_MASK_WEEKDAY;
|
|
} else {
|
|
zephyr_alarm_mask |= RTC_ALARM_TIME_MASK_MONTHDAY;
|
|
}
|
|
}
|
|
|
|
return zephyr_alarm_mask;
|
|
}
|
|
|
|
static int rtc_stm32_alarm_get_supported_fields(const struct device *dev, uint16_t id,
|
|
uint16_t *mask)
|
|
{
|
|
if (mask == NULL) {
|
|
LOG_ERR("NULL mask pointer");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if ((id != RTC_STM32_ALRM_A) && (id != RTC_STM32_ALRM_B)) {
|
|
LOG_ERR("invalid alarm ID %d", id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
*mask = (uint16_t)RTC_STM32_SUPPORTED_ALARM_FIELDS;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rtc_stm32_alarm_get_time(const struct device *dev, uint16_t id, uint16_t *mask,
|
|
struct rtc_time *timeptr)
|
|
{
|
|
struct rtc_stm32_data *data = dev->data;
|
|
struct rtc_stm32_alrm *p_rtc_alrm;
|
|
LL_RTC_AlarmTypeDef *p_ll_rtc_alarm;
|
|
LL_RTC_TimeTypeDef *p_ll_rtc_alrm_time;
|
|
int err = 0;
|
|
|
|
if ((mask == NULL) || (timeptr == NULL)) {
|
|
LOG_ERR("NULL pointer");
|
|
return -EINVAL;
|
|
}
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&data->lock);
|
|
|
|
if (id == RTC_STM32_ALRM_A) {
|
|
p_rtc_alrm = &(data->rtc_alrm_a);
|
|
} else if (id == RTC_STM32_ALRM_B) {
|
|
p_rtc_alrm = &(data->rtc_alrm_b);
|
|
} else {
|
|
LOG_ERR("invalid alarm ID %d", id);
|
|
err = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
p_ll_rtc_alarm = &(p_rtc_alrm->ll_rtc_alrm);
|
|
p_ll_rtc_alrm_time = &(p_ll_rtc_alarm->AlarmTime);
|
|
|
|
memset(timeptr, -1, sizeof(struct rtc_time));
|
|
|
|
rtc_stm32_get_ll_alrm_time(id, timeptr);
|
|
|
|
p_rtc_alrm->user_mask = rtc_stm32_get_ll_alrm_mask(id);
|
|
|
|
*mask = p_rtc_alrm->user_mask;
|
|
|
|
LOG_DBG("get alarm: mday = %d, wday = %d, hour = %d, min = %d, sec = %d, "
|
|
"mask = 0x%04x", timeptr->tm_mday, timeptr->tm_wday, timeptr->tm_hour,
|
|
timeptr->tm_min, timeptr->tm_sec, *mask);
|
|
|
|
unlock:
|
|
k_spin_unlock(&data->lock, key);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int rtc_stm32_alarm_set_time(const struct device *dev, uint16_t id, uint16_t mask,
|
|
const struct rtc_time *timeptr)
|
|
{
|
|
struct rtc_stm32_data *data = dev->data;
|
|
struct rtc_stm32_alrm *p_rtc_alrm;
|
|
LL_RTC_AlarmTypeDef *p_ll_rtc_alarm;
|
|
LL_RTC_TimeTypeDef *p_ll_rtc_alrm_time;
|
|
int err = 0;
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&data->lock);
|
|
|
|
if (id == RTC_STM32_ALRM_A) {
|
|
p_rtc_alrm = &(data->rtc_alrm_a);
|
|
} else if (id == RTC_STM32_ALRM_B) {
|
|
p_rtc_alrm = &(data->rtc_alrm_b);
|
|
} else {
|
|
LOG_ERR("invalid alarm ID %d", id);
|
|
err = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
if ((mask == 0) && (timeptr == NULL)) {
|
|
memset(&(p_rtc_alrm->ll_rtc_alrm), 0, sizeof(LL_RTC_AlarmTypeDef));
|
|
p_rtc_alrm->user_callback = NULL;
|
|
p_rtc_alrm->user_data = NULL;
|
|
p_rtc_alrm->is_pending = false;
|
|
|
|
stm32_backup_domain_enable_access();
|
|
|
|
if (rtc_stm32_is_active_alarm(RTC, id)) {
|
|
LL_RTC_DisableWriteProtection(RTC);
|
|
rtc_stm32_disable_alarm(RTC, id);
|
|
rtc_stm32_disable_interrupt_alarm(RTC, id);
|
|
LL_RTC_EnableWriteProtection(RTC);
|
|
}
|
|
LOG_DBG("Alarm %d has been disabled", id);
|
|
goto disable_bkup_access;
|
|
}
|
|
|
|
if ((mask & ~RTC_STM32_SUPPORTED_ALARM_FIELDS) != 0) {
|
|
LOG_ERR("unsupported alarm %d field mask 0x%04x", id, mask);
|
|
err = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
if (timeptr == NULL) {
|
|
LOG_ERR("timeptr is invalid");
|
|
err = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
if (!rtc_utils_validate_rtc_time(timeptr, mask)) {
|
|
LOG_DBG("One or multiple time values are invalid");
|
|
err = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
p_ll_rtc_alarm = &(p_rtc_alrm->ll_rtc_alrm);
|
|
p_ll_rtc_alrm_time = &(p_ll_rtc_alarm->AlarmTime);
|
|
|
|
memset(p_ll_rtc_alrm_time, 0, sizeof(LL_RTC_TimeTypeDef));
|
|
rtc_stm32_init_ll_alrm_struct(p_ll_rtc_alarm, timeptr, mask);
|
|
|
|
p_rtc_alrm->user_mask = mask;
|
|
|
|
LOG_DBG("set alarm %d : second = %d, min = %d, hour = %d,"
|
|
" wday = %d, mday = %d, mask = 0x%04x",
|
|
id, timeptr->tm_sec, timeptr->tm_min, timeptr->tm_hour,
|
|
timeptr->tm_wday, timeptr->tm_mday, mask);
|
|
|
|
stm32_backup_domain_enable_access();
|
|
|
|
/* Disable the write protection for RTC registers */
|
|
LL_RTC_DisableWriteProtection(RTC);
|
|
|
|
/* Disable ALARM so that the RTC_ISR_ALRAWF/RTC_ISR_ALRBWF is 0 */
|
|
rtc_stm32_disable_alarm(RTC, id);
|
|
rtc_stm32_disable_interrupt_alarm(RTC, id);
|
|
|
|
#ifdef RTC_ISR_ALRAWF
|
|
if (id == RTC_STM32_ALRM_A) {
|
|
/* Wait till RTC ALRAWF flag is set before writing to RTC registers */
|
|
while (!LL_RTC_IsActiveFlag_ALRAW(RTC)) {
|
|
;
|
|
}
|
|
}
|
|
#endif /* RTC_ISR_ALRAWF */
|
|
|
|
#ifdef RTC_ISR_ALRBWF
|
|
if (id == RTC_STM32_ALRM_B) {
|
|
/* Wait till RTC ALRBWF flag is set before writing to RTC registers */
|
|
while (!LL_RTC_IsActiveFlag_ALRBW(RTC)) {
|
|
;
|
|
}
|
|
}
|
|
#endif /* RTC_ISR_ALRBWF */
|
|
|
|
/* init Alarm */
|
|
/* write protection is disabled & enabled again inside the LL_RTC_ALMx_Init function */
|
|
if (rtc_stm32_init_alarm(RTC, LL_RTC_FORMAT_BCD, p_ll_rtc_alarm, id) != SUCCESS) {
|
|
LOG_ERR("Could not initialize Alarm %d", id);
|
|
err = -ECANCELED;
|
|
goto disable_bkup_access;
|
|
}
|
|
|
|
/* Disable the write protection for RTC registers */
|
|
LL_RTC_DisableWriteProtection(RTC);
|
|
|
|
/* Enable Alarm */
|
|
rtc_stm32_enable_alarm(RTC, id);
|
|
/* Clear Alarm flag */
|
|
rtc_stm32_clear_alarm_flag(RTC, id);
|
|
/* Enable Alarm IT */
|
|
rtc_stm32_enable_interrupt_alarm(RTC, id);
|
|
|
|
exti_enable_rtc_alarm_it(RTC_STM32_EXTI_LINE_NUM);
|
|
|
|
/* Enable the write protection for RTC registers */
|
|
LL_RTC_EnableWriteProtection(RTC);
|
|
|
|
disable_bkup_access:
|
|
stm32_backup_domain_disable_access();
|
|
|
|
unlock:
|
|
k_spin_unlock(&data->lock, key);
|
|
|
|
if (id == RTC_STM32_ALRM_A) {
|
|
LOG_DBG("Alarm A : %dh%dm%ds mask = 0x%x",
|
|
LL_RTC_ALMA_GetHour(RTC),
|
|
LL_RTC_ALMA_GetMinute(RTC),
|
|
LL_RTC_ALMA_GetSecond(RTC),
|
|
LL_RTC_ALMA_GetMask(RTC));
|
|
}
|
|
#ifdef RTC_ALARM_B
|
|
if (id == RTC_STM32_ALRM_B) {
|
|
LOG_DBG("Alarm B : %dh%dm%ds mask = 0x%x",
|
|
LL_RTC_ALMB_GetHour(RTC),
|
|
LL_RTC_ALMB_GetMinute(RTC),
|
|
LL_RTC_ALMB_GetSecond(RTC),
|
|
LL_RTC_ALMB_GetMask(RTC));
|
|
}
|
|
#endif /* #ifdef RTC_ALARM_B */
|
|
return err;
|
|
}
|
|
|
|
static int rtc_stm32_alarm_set_callback(const struct device *dev, uint16_t id,
|
|
rtc_alarm_callback callback, void *user_data)
|
|
{
|
|
struct rtc_stm32_data *data = dev->data;
|
|
struct rtc_stm32_alrm *p_rtc_alrm;
|
|
int err = 0;
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&data->lock);
|
|
|
|
if (id == RTC_STM32_ALRM_A) {
|
|
p_rtc_alrm = &(data->rtc_alrm_a);
|
|
} else if (id == RTC_STM32_ALRM_B) {
|
|
p_rtc_alrm = &(data->rtc_alrm_b);
|
|
} else {
|
|
LOG_ERR("invalid alarm ID %d", id);
|
|
err = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Passing the callback function and userdata filled by the user */
|
|
p_rtc_alrm->user_callback = callback;
|
|
p_rtc_alrm->user_data = user_data;
|
|
|
|
unlock:
|
|
k_spin_unlock(&data->lock, key);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int rtc_stm32_alarm_is_pending(const struct device *dev, uint16_t id)
|
|
{
|
|
struct rtc_stm32_data *data = dev->data;
|
|
struct rtc_stm32_alrm *p_rtc_alrm;
|
|
int ret = 0;
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&data->lock);
|
|
|
|
if (id == RTC_STM32_ALRM_A) {
|
|
p_rtc_alrm = &(data->rtc_alrm_a);
|
|
} else if (id == RTC_STM32_ALRM_B) {
|
|
p_rtc_alrm = &(data->rtc_alrm_b);
|
|
} else {
|
|
LOG_ERR("invalid alarm ID %d", id);
|
|
ret = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
__disable_irq();
|
|
ret = p_rtc_alrm->is_pending ? 1 : 0;
|
|
p_rtc_alrm->is_pending = false;
|
|
__enable_irq();
|
|
|
|
unlock:
|
|
k_spin_unlock(&data->lock, key);
|
|
return ret;
|
|
}
|
|
#endif /* STM32_RTC_ALARM_ENABLED */
|
|
|
|
#ifdef CONFIG_RTC_CALIBRATION
|
|
#if !defined(CONFIG_SOC_SERIES_STM32F2X) && \
|
|
!(defined(CONFIG_SOC_SERIES_STM32L1X) && !defined(RTC_SMOOTHCALIB_SUPPORT))
|
|
static int rtc_stm32_set_calibration(const struct device *dev, int32_t calibration)
|
|
{
|
|
ARG_UNUSED(dev);
|
|
|
|
/* Note : calibration is considered here to be ppb value to apply
|
|
* on clock period (not frequency) but with an opposite sign
|
|
*/
|
|
|
|
if ((calibration > MAX_PPB) || (calibration < MIN_PPB)) {
|
|
/* out of supported range */
|
|
return -EINVAL;
|
|
}
|
|
|
|
int32_t nb_pulses = PPB_TO_NB_PULSES(calibration);
|
|
|
|
/* we tested calibration against supported range
|
|
* so theoretically nb_pulses is also within range
|
|
*/
|
|
__ASSERT_NO_MSG(nb_pulses <= MAX_CALP);
|
|
__ASSERT_NO_MSG(nb_pulses >= -MAX_CALM);
|
|
|
|
uint32_t calp, calm;
|
|
|
|
if (nb_pulses > 0) {
|
|
calp = LL_RTC_CALIB_INSERTPULSE_SET;
|
|
calm = MAX_CALP - nb_pulses;
|
|
} else {
|
|
calp = LL_RTC_CALIB_INSERTPULSE_NONE;
|
|
calm = -nb_pulses;
|
|
}
|
|
|
|
/* wait for recalibration to be ok if a previous recalibration occurred */
|
|
if (!WAIT_FOR(LL_RTC_IsActiveFlag_RECALP(RTC) == 0, 100000, k_msleep(1))) {
|
|
return -EIO;
|
|
}
|
|
|
|
stm32_backup_domain_enable_access();
|
|
|
|
LL_RTC_DisableWriteProtection(RTC);
|
|
|
|
MODIFY_REG(RTC->CALR, RTC_CALR_CALP | RTC_CALR_CALM, calp | calm);
|
|
|
|
LL_RTC_EnableWriteProtection(RTC);
|
|
|
|
stm32_backup_domain_disable_access();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rtc_stm32_get_calibration(const struct device *dev, int32_t *calibration)
|
|
{
|
|
ARG_UNUSED(dev);
|
|
|
|
uint32_t calr = sys_read32((mem_addr_t) &RTC->CALR);
|
|
|
|
bool calp_enabled = READ_BIT(calr, RTC_CALR_CALP);
|
|
uint32_t calm = READ_BIT(calr, RTC_CALR_CALM);
|
|
|
|
int32_t nb_pulses = -((int32_t) calm);
|
|
|
|
if (calp_enabled) {
|
|
nb_pulses += MAX_CALP;
|
|
}
|
|
|
|
*calibration = NB_PULSES_TO_PPB(nb_pulses);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
#endif /* CONFIG_RTC_CALIBRATION */
|
|
|
|
static DEVICE_API(rtc, rtc_stm32_driver_api) = {
|
|
.set_time = rtc_stm32_set_time,
|
|
.get_time = rtc_stm32_get_time,
|
|
#ifdef STM32_RTC_ALARM_ENABLED
|
|
.alarm_get_supported_fields = rtc_stm32_alarm_get_supported_fields,
|
|
.alarm_set_time = rtc_stm32_alarm_set_time,
|
|
.alarm_get_time = rtc_stm32_alarm_get_time,
|
|
.alarm_set_callback = rtc_stm32_alarm_set_callback,
|
|
.alarm_is_pending = rtc_stm32_alarm_is_pending,
|
|
#endif /* STM32_RTC_ALARM_ENABLED */
|
|
#ifdef CONFIG_RTC_CALIBRATION
|
|
#if !defined(CONFIG_SOC_SERIES_STM32F2X) && \
|
|
!(defined(CONFIG_SOC_SERIES_STM32L1X) && !defined(RTC_SMOOTHCALIB_SUPPORT))
|
|
.set_calibration = rtc_stm32_set_calibration,
|
|
.get_calibration = rtc_stm32_get_calibration,
|
|
#else
|
|
#error RTC calibration for devices without smooth calibration feature is not supported yet
|
|
#endif
|
|
#endif /* CONFIG_RTC_CALIBRATION */
|
|
};
|
|
|
|
static const struct stm32_pclken rtc_clk[] = STM32_DT_INST_CLOCKS(0);
|
|
|
|
BUILD_ASSERT(DT_INST_CLOCKS_HAS_IDX(0, 1), "RTC source clock not defined in the device tree");
|
|
|
|
#if DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_HSE
|
|
#if STM32_HSE_FREQ % MHZ(1) != 0
|
|
#error RTC clock source HSE frequency should be whole MHz
|
|
#elif STM32_HSE_FREQ < MHZ(16) && defined(LL_RCC_RTC_HSE_DIV_16)
|
|
#define RTC_HSE_PRESCALER LL_RCC_RTC_HSE_DIV_16
|
|
#define RTC_HSE_FREQUENCY (STM32_HSE_FREQ / 16)
|
|
#elif STM32_HSE_FREQ < MHZ(32) && defined(LL_RCC_RTC_HSE_DIV_32)
|
|
#define RTC_HSE_PRESCALER LL_RCC_RTC_HSE_DIV_32
|
|
#define RTC_HSE_FREQUENCY (STM32_HSE_FREQ / 32)
|
|
#elif STM32_HSE_FREQ < MHZ(64) && defined(LL_RCC_RTC_HSE_DIV_64)
|
|
#define RTC_HSE_PRESCALER LL_RCC_RTC_HSE_DIV_64
|
|
#define RTC_HSE_FREQUENCY (STM32_HSE_FREQ / 64)
|
|
#else
|
|
#error RTC does not support HSE frequency
|
|
#endif
|
|
#define RTC_HSE_ASYNC_PRESCALER 125
|
|
#define RTC_HSE_SYNC_PRESCALER (RTC_HSE_FREQUENCY / RTC_HSE_ASYNC_PRESCALER)
|
|
#endif /* DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_HSE */
|
|
|
|
static const struct rtc_stm32_config rtc_config = {
|
|
#if DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_LSI
|
|
/* prescaler values for LSI @ 32 KHz */
|
|
.async_prescaler = 0x7F,
|
|
.sync_prescaler = 0x00F9,
|
|
#elif DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_LSE
|
|
/* prescaler values for LSE @ 32768 Hz */
|
|
.async_prescaler = 0x7F,
|
|
.sync_prescaler = 0x00FF,
|
|
#elif DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_HSE
|
|
/* prescaler values for HSE */
|
|
.async_prescaler = RTC_HSE_ASYNC_PRESCALER - 1,
|
|
.sync_prescaler = RTC_HSE_SYNC_PRESCALER - 1,
|
|
.hse_prescaler = RTC_HSE_PRESCALER,
|
|
#else
|
|
#error Invalid RTC SRC
|
|
#endif
|
|
.pclken = rtc_clk,
|
|
#if DT_INST_NODE_HAS_PROP(0, calib_out_freq)
|
|
.cal_out_freq = _CONCAT(_CONCAT(LL_RTC_CALIB_OUTPUT_, DT_INST_PROP(0, calib_out_freq)), HZ),
|
|
#endif
|
|
};
|
|
|
|
static struct rtc_stm32_data rtc_data;
|
|
|
|
DEVICE_DT_INST_DEFINE(0, &rtc_stm32_init, NULL, &rtc_data, &rtc_config, PRE_KERNEL_1,
|
|
CONFIG_RTC_INIT_PRIORITY, &rtc_stm32_driver_api);
|