zephyr/drivers/timer/mchp_xec_rtos_timer.c
Scott Worley ef4ec43e63 drivers: timer: microchip: xec: Microchip MEC one kernel timer driver
We want to simplify the maintenance burden and confusion of having
more than one driver for the same kernel timer peripheral used on
all Microchip MEC parts. The XEC version of the driver was converted
register definitions in the driver. Register access is performed using
Zephyr sys_read/write architecture specific inline routines. Driver DT
YAML was updated to use phandle for the 32-bit basic timer used for
ARCH_HAS_CUSTOM_BUSY_WAIT support, basic timer max value property,
and GIRQ interrtup aggregator hardware information.
SoC part Kconfigs, chip level/board level DTSI updated to use the
unified driver.

Signed-off-by: Scott Worley <scott.worley@microchip.com>
2025-07-19 15:39:40 -04:00

437 lines
13 KiB
C

/*
* Copyright (c) 2019 Intel Corporation
* Copyright (c) 2019 Microchip Technology Incorporated
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT microchip_xec_rtos_timer
#include <zephyr/init.h>
#include <zephyr/devicetree.h>
#include <soc.h>
#include <zephyr/arch/common/sys_io.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/sys_clock.h>
#include <zephyr/spinlock.h>
#include <cmsis_core.h>
#include <zephyr/irq.h>
BUILD_ASSERT(!IS_ENABLED(CONFIG_SMP), "XEC RTOS timer doesn't support SMP");
BUILD_ASSERT(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC == 32768,
"XEC RTOS timer HW frequency is fixed at 32768");
/* Microchip MEC 32-bit RTOS timer runs on the 32 KHz always on clock.
* It is a downcounter with auto-reload capability.
*/
#define TIMER_CNT_OFS 0 /* R/W counter */
#define TIMER_PRLD_OFS 4u /* R/W preload value */
#define TIMER_CR_OFS 8u /* R/W control */
#define TIMER_CR_ACTV_POS 0 /* activate block */
#define TIMER_CR_ARL_EN_POS 1 /* auto-reload enable */
#define TIMER_CR_START_POS 2 /* start timer counting */
#define TIMER_CR_HDBA_POS 3 /* Halt counting if debugger not in reset */
#define TIMER_CR_HALT_POS 4 /* Halt if written to 1, unhalt by clearing */
/* MEC GIRQ */
#define GIRQ_SIZE 20u /* Each GIRQx is 5 32-bit registers */
#define GIRQ_SRC_OFS 0 /* R/W1C latched status bits */
#define GIRQ_ENSET_OFS 4u /* read, write 1 to set enable bit(s) */
#define GIRQ_RESULT_OFS 8u /* R/O bitwise AND of SRC and ENSET */
#define GIRQ_ENCLR_OFS 12u /* read, write 1 to clear enable bit(s) */
#define DEBUG_RTOS_TIMER 0
#if DEBUG_RTOS_TIMER != 0
/* Enable feature to halt timer on JTAG/SWD CPU halt */
#define TIMER_START_VAL (BIT(TIMER_CR_ACTV_POS) | BIT(TIMER_CR_START_POS) | BIT(TIMER_CR_HALT_POS))
#else
#define TIMER_START_VAL (BIT(TIMER_CR_ACTV_POS) | BIT(TIMER_CR_START_POS))
#endif
/*
* Overview:
*
* This driver enables the Microchip XEC 32KHz based RTOS timer as the Zephyr
* system timer. It supports both legacy ("tickful") mode as well as
* TICKLESS_KERNEL. The XEC RTOS timer is a down counter with a fixed
* frequency of 32768 Hz. The driver is based upon the Intel local APIC
* timer driver.
* Configuration:
*
* CONFIG_MCHP_XEC_RTOS_TIMER=y
*
* CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC=<hz> must be set to 32768.
*
* To reduce truncation errors from accumulating due to conversion
* to/from time, ticks, and HW cycles set ticks per second equal to
* the frequency. With tickless kernel mode enabled the kernel will not
* program a periodic timer at this fast rate.
* CONFIG_SYS_CLOCK_TICKS_PER_SEC=32768
*/
#define CYCLES_PER_TICK (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / CONFIG_SYS_CLOCK_TICKS_PER_SEC)
#define TIMER_BASE (mm_reg_t) DT_INST_REG_ADDR(0)
#define TIMER_GIRQ_NUM DT_INST_PROP_BY_IDX(0, girqs, 0)
#define TIMER_GIRQ_BITPOS DT_INST_PROP_BY_IDX(0, girqs, 1)
/* data sheet GIRQ numbers start at 8 */
#define TIMER_GIRQ_BASE \
(mm_reg_t)(DT_REG_ADDR(DT_NODELABEL(ecia)) + (GIRQ_SIZE * (TIMER_GIRQ_NUM - 8u)))
#define TIMER_NVIC_NO DT_INST_IRQN(0)
#define TIMER_NVIC_PRIO DT_INST_IRQ(0, priority)
/* Mask off bits[31:28] of 32-bit count */
#define TIMER_MAX 0x0fffffffu
#define TIMER_COUNT_MASK 0x0fffffffu
#define TIMER_STOPPED 0xf0000000u
/* Adjust cycle count programmed into timer for HW restart latency */
#define TIMER_ADJUST_LIMIT 2
#define TIMER_ADJUST_CYCLES 1
/* max number of ticks we can load into the timer in one shot */
#define MAX_TICKS (TIMER_MAX / CYCLES_PER_TICK)
#ifdef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT
BUILD_ASSERT(DT_INST_NODE_HAS_PROP(0, busy_wait_timer),
"Driver does not not have busy-wait-timer property!");
#define BTMR_NODE DT_INST_PHANDLE(0, busy_wait_timer)
BUILD_ASSERT(DT_PROP(BTMR_NODE, max_value) == UINT32_MAX, "Custom busy wait timer is not 32-bit!");
#define BTMR_BASE (mm_reg_t) DT_REG_ADDR(BTMR_NODE)
#define BTMR_CNT_OFS 0
#define BTMR_PRLD_OFS 4u
#define BTMR_SR_OFS 8u
#define BTMR_IER_OFS 0xcu
#define BTMR_CR_OFS 0x10u
#define BTMR_CR_ACTV_POS 0
#define BTMR_CR_CNT_UP_POS 2
#define BTMR_CR_ARS_POS 3
#define BTMR_CR_SOFT_RST_POS 4
#define BTMR_CR_START_POS 5
#define BTMR_CR_RLD_POS 6
#define BTMR_CR_HALT_POS 7
#define BTMR_CR_PS_POS 16
#define BTMR_CR_PS_MSK GENMASK(31, 16)
#define BTMR_CR_PS_SET(n) FIELD_PREP(BTMR_CR_PS_MSK, (n))
#define BMTR_CR_PS_GET(n) FIELD_GET(BTMR_CR_PS_MSK, (n))
#endif
/*
* The spinlock protects all access to the RTMR registers, as well as
* 'total_cycles', 'last_announcement', and 'cached_icr'.
*
* One important invariant that must be observed: `total_cycles` + `cached_icr`
* is always an integral multiple of CYCLE_PER_TICK; this is, timer interrupts
* are only ever scheduled to occur at tick boundaries.
*/
static struct k_spinlock lock;
static uint32_t total_cycles;
static uint32_t cached_icr = CYCLES_PER_TICK;
static inline void timer_restart(uint32_t countdown)
{
sys_write32(0, TIMER_BASE + TIMER_CR_OFS);
sys_write32(BIT(TIMER_CR_ACTV_POS), TIMER_BASE + TIMER_CR_OFS);
sys_write32(countdown, TIMER_BASE + TIMER_PRLD_OFS);
sys_write32(TIMER_START_VAL, TIMER_BASE + TIMER_CR_OFS);
}
/*
* Read the RTOS timer counter handling the case where the timer
* has been reloaded within 1 32KHz clock of reading its count register.
* The RTOS timer hardware must synchronize the write to its control register
* on the AHB clock domain with the 32KHz clock domain of its internal logic.
* This synchronization can take from nearly 0 time up to 1 32KHz clock as it
* depends upon which 48MHz AHB clock with a 32KHz period the register write
* was on. We detect the timer is in the load state by checking the read-only
* count register and the START bit in the control register. If count register
* is 0 and the START bit is set then the timer has been started and is in the
* process of moving the preload register value into the count register.
*/
static inline uint32_t timer_count(void)
{
uint32_t ccr = sys_read32(TIMER_BASE + TIMER_CNT_OFS);
if ((ccr == 0) && sys_test_bit(TIMER_BASE + TIMER_CR_OFS, TIMER_CR_START_POS)) {
ccr = cached_icr;
}
return ccr;
}
#ifdef CONFIG_TICKLESS_KERNEL
static uint32_t last_announcement; /* last time we called sys_clock_announce() */
/*
* Request a timeout n Zephyr ticks in the future from now.
* Requested number of ticks in the future of n <= 1 means the kernel wants
* the tick announced as soon as possible, ideally no more than one tick
* in the future.
*
* Per comment below we don't clear RTMR pending interrupt.
* RTMR counter register is read-only and is loaded from the preload
* register by a 0->1 transition of the control register start bit.
* Writing a new value to preload only takes effect once the count
* register reaches 0.
*/
void sys_clock_set_timeout(int32_t n, bool idle)
{
ARG_UNUSED(idle);
uint32_t ccr, temp;
int full_ticks; /* number of complete ticks we'll wait */
uint32_t full_cycles; /* full_ticks represented as cycles */
uint32_t partial_cycles; /* number of cycles to first tick boundary */
if (idle && (n == K_TICKS_FOREVER)) {
/*
* We are not in a locked section. Are writes to two
* global objects safe from pre-emption?
*/
sys_write32(0, TIMER_BASE + TIMER_CR_OFS); /* stop timer */
cached_icr = TIMER_STOPPED;
return;
}
if (n < 1) {
full_ticks = 0;
} else if ((n == K_TICKS_FOREVER) || (n > MAX_TICKS)) {
full_ticks = MAX_TICKS - 1;
} else {
full_ticks = n - 1;
}
full_cycles = full_ticks * CYCLES_PER_TICK;
k_spinlock_key_t key = k_spin_lock(&lock);
ccr = timer_count();
/* turn off to clear any pending interrupt status */
sys_write32(0, TIMER_BASE + TIMER_CR_OFS);
sys_write32(BIT(TIMER_GIRQ_BITPOS), TIMER_GIRQ_BASE + GIRQ_SRC_OFS);
NVIC_ClearPendingIRQ(TIMER_NVIC_NO);
temp = total_cycles;
temp += (cached_icr - ccr);
temp &= TIMER_COUNT_MASK;
total_cycles = temp;
partial_cycles = CYCLES_PER_TICK - (total_cycles % CYCLES_PER_TICK);
cached_icr = full_cycles + partial_cycles;
/* adjust for up to one 32KHz cycle startup time */
temp = cached_icr;
if (temp > TIMER_ADJUST_LIMIT) {
temp -= TIMER_ADJUST_CYCLES;
}
timer_restart(temp);
k_spin_unlock(&lock, key);
}
/*
* Return the number of Zephyr ticks elapsed from last call to
* sys_clock_announce in the ISR. The caller casts uint32_t to int32_t.
* We must make sure bit[31] is 0 in the return value.
*/
uint32_t sys_clock_elapsed(void)
{
uint32_t ccr;
uint32_t ticks;
int32_t elapsed;
k_spinlock_key_t key = k_spin_lock(&lock);
ccr = timer_count();
/* It may not look efficient but the compiler does a good job */
elapsed = (int32_t)total_cycles - (int32_t)last_announcement;
if (elapsed < 0) {
elapsed = -1 * elapsed;
}
ticks = (uint32_t)elapsed;
ticks += cached_icr - ccr;
ticks /= CYCLES_PER_TICK;
ticks &= TIMER_COUNT_MASK;
k_spin_unlock(&lock, key);
return ticks;
}
static void xec_rtos_timer_isr(const void *arg)
{
ARG_UNUSED(arg);
uint32_t cycles;
int32_t ticks;
k_spinlock_key_t key = k_spin_lock(&lock);
sys_write32(BIT(TIMER_GIRQ_BITPOS), TIMER_GIRQ_BASE + GIRQ_SRC_OFS);
/* Restart the timer as early as possible to minimize drift... */
timer_restart(MAX_TICKS * CYCLES_PER_TICK);
cycles = cached_icr;
cached_icr = MAX_TICKS * CYCLES_PER_TICK;
total_cycles += cycles;
total_cycles &= TIMER_COUNT_MASK;
/* handle wrap by using (power of 2) - 1 mask */
ticks = total_cycles - last_announcement;
ticks &= TIMER_COUNT_MASK;
ticks /= CYCLES_PER_TICK;
last_announcement = total_cycles;
k_spin_unlock(&lock, key);
sys_clock_announce(ticks);
}
#else
/* Non-tickless kernel build. */
static void xec_rtos_timer_isr(const void *arg)
{
ARG_UNUSED(arg);
k_spinlock_key_t key = k_spin_lock(&lock);
sys_write32(BIT(TIMER_GIRQ_BITPOS), TIMER_GIRQ_BASE + GIRQ_SRC_OFS);
/* Restart the timer as early as possible to minimize drift... */
timer_restart(cached_icr);
uint32_t temp = total_cycles + CYCLES_PER_TICK;
total_cycles = temp & TIMER_COUNT_MASK;
k_spin_unlock(&lock, key);
sys_clock_announce(1);
}
uint32_t sys_clock_elapsed(void)
{
return 0U;
}
#endif /* CONFIG_TICKLESS_KERNEL */
/*
* Warning RTOS timer resolution is 30.5 us.
* This is called by two code paths:
* 1. Kernel call to k_cycle_get_32() -> arch_k_cycle_get_32() -> here.
* The kernel is casting return to (int) and using it uncasted in math
* expressions with int types. Expression result is stored in an int.
* 2. If CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT is not defined then
* z_impl_k_busy_wait calls here. This code path uses the value as uint32_t.
*
*/
uint32_t sys_clock_cycle_get_32(void)
{
uint32_t ret;
uint32_t ccr;
k_spinlock_key_t key = k_spin_lock(&lock);
ccr = timer_count();
ret = (total_cycles + (cached_icr - ccr)) & TIMER_COUNT_MASK;
k_spin_unlock(&lock, key);
return ret;
}
void sys_clock_idle_exit(void)
{
if (cached_icr == TIMER_STOPPED) {
cached_icr = CYCLES_PER_TICK;
timer_restart(cached_icr);
}
}
void sys_clock_disable(void)
{
sys_write32(0, TIMER_BASE + TIMER_CR_OFS);
}
#ifdef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT
/*
* We implement custom busy wait using a MEC1501 basic timer running on
* the 48MHz clock domain. This code is here for future power management
* save/restore of the timer context.
*/
/*
* 32-bit basic timer 0 configured for 1MHz count up, auto-reload,
* and no interrupt generation.
*/
void arch_busy_wait(uint32_t usec_to_wait)
{
if (usec_to_wait == 0) {
return;
}
uint32_t start = sys_read32(BTMR_BASE + BTMR_CNT_OFS);
for (;;) {
uint32_t curr = sys_read32(BTMR_BASE + BTMR_CNT_OFS);
if ((curr - start) >= usec_to_wait) {
break;
}
}
}
#endif
static int sys_clock_driver_init(void)
{
#ifdef CONFIG_TICKLESS_KERNEL
cached_icr = MAX_TICKS;
#endif
sys_write32(0, TIMER_BASE + TIMER_CR_OFS);
sys_write32(BIT(TIMER_GIRQ_BITPOS), TIMER_GIRQ_BASE + GIRQ_ENCLR_OFS);
sys_write32(BIT(TIMER_GIRQ_BITPOS), TIMER_GIRQ_BASE + GIRQ_SRC_OFS);
NVIC_ClearPendingIRQ(TIMER_NVIC_NO);
IRQ_CONNECT(TIMER_NVIC_NO, TIMER_NVIC_PRIO, xec_rtos_timer_isr, 0, 0);
irq_enable(TIMER_NVIC_NO);
sys_write32(BIT(TIMER_GIRQ_BITPOS), TIMER_GIRQ_BASE + GIRQ_ENSET_OFS);
#ifdef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT
uint32_t btmr_ctrl = (BIT(BTMR_CR_ACTV_POS) | BIT(BTMR_CR_ARS_POS) |
BIT(BTMR_CR_CNT_UP_POS) | BTMR_CR_PS_SET(47u));
sys_write32(BIT(BTMR_CR_SOFT_RST_POS), BTMR_BASE + BTMR_CR_OFS);
sys_write32(btmr_ctrl, BTMR_BASE + BTMR_CR_OFS);
sys_write32(UINT32_MAX, BTMR_BASE + BTMR_PRLD_OFS);
sys_set_bit(BTMR_BASE + BTMR_CR_OFS, BTMR_CR_START_POS);
timer_restart(cached_icr);
/* wait for RTOS timer to load count register from preload */
while (sys_read32(BTMR_BASE + BTMR_CNT_OFS) == 0) {
;
}
#else
timer_restart(cached_icr);
#endif
return 0;
}
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);