zephyr/drivers/serial/uart_k20.c
Daniel Leung 8a3273aeb6 arm/fsl_frdm_k64f: serial/uart_k20: rework UART clock gating
The code to poke the system integration module to disable clock gating
for UARTs only works for UART0-3 since all the bits are in the same
register. However, clocks for UART4 and UART5 are controlled by
another register. This means that we have been writing to the wrong
bit for enabling UART4.

This patch fixes this issue, and moves the clock gating clock into
board initialization. The incorrect code has also been removed to
prevent accidental mis-use. The dev_data struct is no longer needed
for uart_k20, so that is removed as well.

Change-Id: I67845a417e43647bf0ffcbdbda34ce68fa887713
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
2016-02-05 20:25:06 -05:00

479 lines
12 KiB
C

/*
* Copyright (c) 2013-2015 Wind River Systems, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @brief UART driver for the Freescale K20 Family of microprocessors.
*
* Before individual UART port can be used, uart_k20_port_init() has to be
* called to setup the port.
*/
#include <nanokernel.h>
#include <arch/cpu.h>
#include <stdint.h>
#include <board.h>
#include <init.h>
#include <uart.h>
#include <toolchain.h>
#include <sections.h>
#include "uart_k20_priv.h"
/* convenience defines */
#define DEV_CFG(dev) \
((struct uart_device_config * const)(dev)->config->config_info)
#define UART_STRUCT(dev) \
((volatile struct K20_UART *)(DEV_CFG(dev))->base)
static struct uart_driver_api uart_k20_driver_api;
/**
* @brief Initialize UART channel
*
* This routine is called to reset the chip in a quiescent state.
* It is assumed that this function is called only once per UART.
*
* @param dev UART device struct (of type struct uart_device_config)
*
* @return DEV_OK
*/
static int uart_k20_init(struct device *dev)
{
int old_level; /* old interrupt lock level */
union C1 c1; /* UART C1 register value */
union C2 c2; /* UART C2 register value */
volatile struct K20_UART *uart = UART_STRUCT(dev);
struct uart_init_info * const init_info = &DEV_CFG(dev)->init_info;
/* disable interrupts */
old_level = irq_lock();
_uart_k20_baud_rate_set(uart, init_info->sys_clk_freq,
init_info->baud_rate);
/* 1 start bit, 8 data bits, no parity, 1 stop bit */
c1.value = 0;
uart->c1 = c1;
/* enable Rx and Tx with interrupts disabled */
c2.value = 0;
c2.field.rx_enable = 1;
c2.field.tx_enable = 1;
uart->c2 = c2;
/* restore interrupt state */
irq_unlock(old_level);
dev->driver_api = &uart_k20_driver_api;
return DEV_OK;
}
/**
* @brief Poll the device for input.
*
* @param dev UART device struct (of type struct uart_device_config)
* @param c Pointer to character
*
* @return 0 if a character arrived, -1 if the input buffer if empty.
*/
static int uart_k20_poll_in(struct device *dev, unsigned char *c)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
if (uart->s1.field.rx_data_full == 0)
return (-1);
/* got a character */
*c = uart->d;
return 0;
}
/**
* @brief Output a character in polled mode.
*
* Checks if the transmitter is empty. If empty, a character is written to
* the data register.
*
* If the hardware flow control is enabled then the handshake signal CTS has to
* be asserted in order to send a character.
*
* @param dev UART device struct (of type struct uart_device_config)
* @param c Character to send
*
* @return sent character
*/
static unsigned char uart_k20_poll_out(struct device *dev,
unsigned char c)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
/* wait for transmitter to ready to accept a character */
while (uart->s1.field.tx_data_empty == 0)
;
uart->d = c;
return c;
}
#if CONFIG_UART_INTERRUPT_DRIVEN
/**
* @brief Fill FIFO with data
*
* @param dev UART device struct (of type struct uart_device_config)
* @param tx_data Data to transmit
* @param len Number of bytes to send
*
* @return number of bytes sent
*/
static int uart_k20_fifo_fill(struct device *dev, const uint8_t *tx_data,
int len)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
uint8_t num_tx = 0;
while ((len - num_tx > 0) && (uart->s1.field.tx_data_empty == 1)) {
uart->d = tx_data[num_tx++];
}
return num_tx;
}
/**
* @brief Read data from FIFO
*
* @param dev UART device struct (of type struct uart_device_config)
* @param rx_data Pointer to data container
* @param size Container size in bytes
*
* @return number of bytes read
*/
static int uart_k20_fifo_read(struct device *dev, uint8_t *rx_data,
const int size)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
uint8_t num_rx = 0;
while ((size - num_rx > 0) && (uart->s1.field.rx_data_full != 0)) {
rx_data[num_rx++] = uart->d;
}
return num_rx;
}
/**
* @brief Enable TX interrupt
*
* @param dev UART device struct (of type struct uart_device_config)
*
* @return N/A
*/
static void uart_k20_irq_tx_enable(struct device *dev)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
uart->c2.field.tx_int_dma_tx_en = 1;
}
/**
* @brief Disable TX interrupt in IER
*
* @param dev UART device struct (of type struct uart_device_config)
*
* @return N/A
*/
static void uart_k20_irq_tx_disable(struct device *dev)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
uart->c2.field.tx_int_dma_tx_en = 0;
}
/**
* @brief Check if Tx IRQ has been raised
*
* @param dev UART device struct (of type struct uart_device_config)
*
* @return 1 if an IRQ is ready, 0 otherwise
*/
static int uart_k20_irq_tx_ready(struct device *dev)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
return (uart->c2.field.tx_int_dma_tx_en == 0) ?
0 : uart->s1.field.tx_data_empty;
}
/**
* @brief Enable RX interrupt in IER
*
* @param dev UART device struct (of type struct uart_device_config)
*
* @return N/A
*/
static void uart_k20_irq_rx_enable(struct device *dev)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
uart->c2.field.rx_full_int_dma_tx_en = 1;
}
/**
* @brief Disable RX interrupt in IER
*
* @param dev UART device struct (of type struct uart_device_config)
*
* @return N/A
*/
static void uart_k20_irq_rx_disable(struct device *dev)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
uart->c2.field.rx_full_int_dma_tx_en = 0;
}
/**
* @brief Check if Rx IRQ has been raised
*
* @param dev UART device struct (of type struct uart_device_config)
*
* @return 1 if an IRQ is ready, 0 otherwise
*/
static int uart_k20_irq_rx_ready(struct device *dev)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
return (uart->c2.field.rx_full_int_dma_tx_en == 0) ?
0 : uart->s1.field.rx_data_full;
}
/**
* @brief Enable error interrupt
*
* @param dev UART device struct (of type struct uart_device_config)
*
* @return N/A
*/
static void uart_k20_irq_err_enable(struct device *dev)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
union C3 c3 = uart->c3;
c3.field.parity_err_int_en = 1;
c3.field.frame_err_int_en = 1;
c3.field.noise_err_int_en = 1;
c3.field.overrun_err_int_en = 1;
uart->c3 = c3;
}
/**
* @brief Disable error interrupt
*
* @param dev UART device struct (of type struct uart_device_config)
*
* @return N/A
*/
static void uart_k20_irq_err_disable(struct device *dev)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
union C3 c3 = uart->c3;
c3.field.parity_err_int_en = 0;
c3.field.frame_err_int_en = 0;
c3.field.noise_err_int_en = 0;
c3.field.overrun_err_int_en = 0;
uart->c3 = c3;
}
/**
* @brief Check if Tx or Rx IRQ is pending
*
* @param dev UART device struct (of type struct uart_device_config)
*
* @return 1 if a Tx or Rx IRQ is pending, 0 otherwise
*/
static int uart_k20_irq_is_pending(struct device *dev)
{
return uart_k20_irq_tx_ready(dev) || uart_k20_irq_rx_ready(dev);
}
/**
* @brief Update IRQ status
*
* @param dev UART device struct (of type struct uart_device_config)
*
* @return always 1
*/
static int uart_k20_irq_update(struct device *dev)
{
return 1;
}
/**
* @brief Returns UART interrupt number
*
* Returns the IRQ number used by the specified UART port
*
* @param dev UART device struct (of type struct uart_device_config)
*
* @return IRQ number
*/
static unsigned int uart_k20_irq_get(struct device *dev)
{
return (unsigned int)DEV_CFG(dev)->irq;
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static struct uart_driver_api uart_k20_driver_api = {
.poll_in = uart_k20_poll_in,
.poll_out = uart_k20_poll_out,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = uart_k20_fifo_fill,
.fifo_read = uart_k20_fifo_read,
.irq_tx_enable = uart_k20_irq_tx_enable,
.irq_tx_disable = uart_k20_irq_tx_disable,
.irq_tx_ready = uart_k20_irq_tx_ready,
.irq_rx_enable = uart_k20_irq_rx_enable,
.irq_rx_disable = uart_k20_irq_rx_disable,
.irq_rx_ready = uart_k20_irq_rx_ready,
.irq_err_enable = uart_k20_irq_err_enable,
.irq_err_disable = uart_k20_irq_err_disable,
.irq_is_pending = uart_k20_irq_is_pending,
.irq_update = uart_k20_irq_update,
.irq_get = uart_k20_irq_get,
#endif
};
#ifdef CONFIG_UART_K20_PORT_0
static struct uart_device_config uart_k20_dev_cfg_0 = {
.base = (uint8_t *)CONFIG_UART_K20_PORT_0_BASE_ADDR,
.irq = CONFIG_UART_K20_PORT_0_IRQ,
.irq_pri = CONFIG_UART_K20_PORT_0_IRQ_PRI,
.init_info.baud_rate = CONFIG_UART_K20_PORT_0_BAUD_RATE,
.init_info.sys_clk_freq = CONFIG_UART_K20_PORT_0_CLK_FREQ,
};
DECLARE_DEVICE_INIT_CONFIG(uart_k20_0,
CONFIG_UART_K20_PORT_0_NAME,
&uart_k20_init,
&uart_k20_dev_cfg_0);
SYS_DEFINE_DEVICE(uart_k20_0, NULL, PRIMARY,
CONFIG_KERNEL_INIT_PRIORITY_DEVICE);
#endif /* CONFIG_UART_K20_PORT_0 */
#ifdef CONFIG_UART_K20_PORT_1
static struct uart_device_config uart_k20_dev_cfg_1 = {
.base = (uint8_t *)CONFIG_UART_K20_PORT_1_BASE_ADDR,
.irq = CONFIG_UART_K20_PORT_1_IRQ,
.irq_pri = CONFIG_UART_K20_PORT_1_IRQ_PRI,
.init_info.baud_rate = CONFIG_UART_K20_PORT_1_BAUD_RATE,
.init_info.sys_clk_freq = CONFIG_UART_K20_PORT_1_CLK_FREQ,
};
DECLARE_DEVICE_INIT_CONFIG(uart_k20_1,
CONFIG_UART_K20_PORT_1_NAME,
&uart_k20_init,
&uart_k20_dev_cfg_1);
SYS_DEFINE_DEVICE(uart_k20_1, NULL, PRIMARY,
CONFIG_KERNEL_INIT_PRIORITY_DEVICE);
#endif /* CONFIG_UART_K20_PORT_1 */
#ifdef CONFIG_UART_K20_PORT_2
static struct uart_device_config uart_k20_dev_cfg_2 = {
.base = (uint8_t *)CONFIG_UART_K20_PORT_2_BASE_ADDR,
.irq = CONFIG_UART_K20_PORT_2_IRQ,
.irq_pri = CONFIG_UART_K20_PORT_2_IRQ_PRI,
.init_info.baud_rate = CONFIG_UART_K20_PORT_2_BAUD_RATE,
.init_info.sys_clk_freq = CONFIG_UART_K20_PORT_2_CLK_FREQ,
};
DECLARE_DEVICE_INIT_CONFIG(uart_k20_2,
CONFIG_UART_K20_PORT_2_NAME,
&uart_k20_init,
&uart_k20_dev_cfg_2);
SYS_DEFINE_DEVICE(uart_k20_2, NULL, PRIMARY,
CONFIG_KERNEL_INIT_PRIORITY_DEVICE);
#endif /* CONFIG_UART_K20_PORT_2 */
#ifdef CONFIG_UART_K20_PORT_3
static struct uart_device_config uart_k20_dev_cfg_3 = {
.base = (uint8_t *)CONFIG_UART_K20_PORT_3_BASE_ADDR,
.irq = CONFIG_UART_K20_PORT_3_IRQ,
.irq_pri = CONFIG_UART_K20_PORT_3_IRQ_PRI,
.init_info.baud_rate = CONFIG_UART_K20_PORT_3_BAUD_RATE,
.init_info.sys_clk_freq = CONFIG_UART_K20_PORT_3_CLK_FREQ,
};
DECLARE_DEVICE_INIT_CONFIG(uart_k20_3,
CONFIG_UART_K20_PORT_3_NAME,
&uart_k20_init,
&uart_k20_dev_cfg_3);
SYS_DEFINE_DEVICE(uart_k20_3, NULL, PRIMARY,
CONFIG_KERNEL_INIT_PRIORITY_DEVICE);
#endif /* CONFIG_UART_K20_PORT_3 */
#ifdef CONFIG_UART_K20_PORT_4
static struct uart_device_config uart_k20_dev_cfg_4 = {
.base = (uint8_t *)CONFIG_UART_K20_PORT_4_BASE_ADDR,
.irq = CONFIG_UART_K20_PORT_4_IRQ,
.irq_pri = CONFIG_UART_K20_PORT_4_IRQ_PRI,
.init_info.baud_rate = CONFIG_UART_K20_PORT_4_BAUD_RATE,
.init_info.sys_clk_freq = CONFIG_UART_K20_PORT_4_CLK_FREQ,
};
DECLARE_DEVICE_INIT_CONFIG(uart_k20_4,
CONFIG_UART_K20_PORT_4_NAME,
&uart_k20_init,
&uart_k20_dev_cfg_4);
SYS_DEFINE_DEVICE(uart_k20_4, NULL, PRIMARY,
CONFIG_KERNEL_INIT_PRIORITY_DEVICE);
#endif /* CONFIG_UART_K20_PORT_4 */