zephyr/drivers/serial/uart_miv.c
Paul Sokolovsky 57286afdd6 drivers: uart: Allow to pass arbitrary user data to irq callback
Zephyr UART drivers offer very low-level functionality. Oftentimes,
it would be useful to provide higher-level wrappers around UART
device which would offer additional functionality. However, UART
driver irq callback routine receives just a pointer to (low-level)
UART device, and it's not possible to get to a wrapper structure
(without introducing expensive external mapping structures). This
is an indirect reason why the current UARt wrappers - uart_pipe,
console - are instantiated statically just for one underlying UART
device and cannot be reused for multiple devices.

Solve this by allowing to pass an arbitrary user data to irq
callback, set by new uart_irq_callback_user_data_set() function.
Existing uart_irq_callback_set() keeps setting a callback which
will receive pointer to the device.

While public API maintains compatibility, drivers themselves need
to be updated to support arbitrary user data storage/passing (as
legacy uart_irq_callback_set() functionality is now implemented in
terms of it).

Signed-off-by: Paul Sokolovsky <paul.sokolovsky@linaro.org>
2018-08-02 19:20:12 +02:00

419 lines
9.6 KiB
C

/*
* Copyright (c) 2018 Antmicro <www.antmicro.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <kernel.h>
#include <arch/cpu.h>
#include <uart.h>
#include <board.h>
/* UART REGISTERS DEFINITIONS */
/* TX register */
#define TXDATA_REG_OFFSET 0x0
#define TXDATA_OFFSET 0x0
#define TXDATA_MASK 0xFF
#define TXDATA_SHIFT 0
/* RX register */
#define RXDATA_REG_OFFSET 0x4
#define RXDATA_OFFSET 0x4
#define RXDATA_MASK 0xFF
#define RXDATA_SHIFT 0
/* Control1 register */
#define CTRL1_REG_OFFSET 0x8
/* Baud value lower 8 bits */
#define CTRL1_BAUDVALUE_OFFSET 0x8
#define CTRL1_BAUDVALUE_MASK 0xFF
#define CTRL1_BAUDVALUE_SHIFT 0
/* Control2 register */
#define CTRL2_REG_OFFSET 0xC
/* Bit length */
#define CTRL2_BIT_LENGTH_OFFSET 0xC
#define CTRL2_BIT_LENGTH_MASK 0x01
#define CTRL2_BIT_LENGTH_SHIFT 0
/* Parity enable */
#define CTRL2_PARITY_EN_OFFSET 0xC
#define CTRL2_PARITY_EN_MASK 0x02
#define CTRL2_PARITY_EN_SHIFT 1
/* Odd/even parity configuration */
#define CTRL2_ODD_EVEN_OFFSET 0xC
#define CTRL2_ODD_EVEN_MASK 0x04
#define CTRL2_ODD_EVEN_SHIFT 2
/* Baud value higher 5 bits */
#define CTRL2_BAUDVALUE_OFFSET 0xC
#define CTRL2_BAUDVALUE_MASK 0xF8
#define CTRL2_BAUDVALUE_SHIFT 3
/* Status register */
#define StatusReg_REG_OFFSET 0x10
#define STATUS_REG_OFFSET 0x10
/* TX ready */
#define STATUS_TXRDY_OFFSET 0x10
#define STATUS_TXRDY_MASK 0x01
#define STATUS_TXRDY_SHIFT 0
/* Receive full - raised even when 1 char arrived */
#define STATUS_RXFULL_OFFSET 0x10
#define STATUS_RXFULL_MASK 0x02
#define STATUS_RXFULL_SHIFT 1
/* Parity error */
#define STATUS_PARITYERR_OFFSET 0x10
#define STATUS_PARITYERR_MASK 0x04
#define STATUS_PARITYERR_SHIFT 2
/* Overflow */
#define STATUS_OVERFLOW_OFFSET 0x10
#define STATUS_OVERFLOW_MASK 0x08
#define STATUS_OVERFLOW_SHIFT 3
/* Frame error */
#define STATUS_FRAMERR_OFFSET 0x10
#define STATUS_FRAMERR_MASK 0x10
#define STATUS_FRAMERR_SHIFT 4
/* Data bits length defines */
#define DATA_7_BITS 0x00
#define DATA_8_BITS 0x01
/* Parity defines */
#define NO_PARITY 0x00
#define EVEN_PARITY 0x02
#define ODD_PARITY 0x06
/* Error Status definitions */
#define UART_PARITY_ERROR 0x01
#define UART_OVERFLOW_ERROR 0x02
#define UART_FRAMING_ERROR 0x04
#define BAUDVALUE_LSB ((u16_t)(0x00FF))
#define BAUDVALUE_MSB ((u16_t)(0xFF00))
#define BAUDVALUE_SHIFT ((u8_t)(5))
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static struct k_thread rx_thread;
static K_THREAD_STACK_DEFINE(rx_stack, 512);
#endif
struct uart_miv_regs_t {
u8_t tx;
u8_t reserved0[3];
u8_t rx;
u8_t reserved1[3];
u8_t ctrlreg1;
u8_t reserved2[3];
u8_t ctrlreg2;
u8_t reserved3[3];
u8_t status;
};
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
typedef void (*irq_cfg_func_t)(struct device *dev);
#endif
struct uart_miv_device_config {
u32_t uart_addr;
u32_t sys_clk_freq;
u32_t line_config;
u32_t baud_rate;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
irq_cfg_func_t cfg_func;
#endif
};
struct uart_miv_data {
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t callback;
void *cb_data;
#endif
};
#define DEV_CFG(dev) \
((const struct uart_miv_device_config * const) \
(dev)->config->config_info)
#define DEV_UART(dev) \
((struct uart_miv_regs_t *)(DEV_CFG(dev))->uart_addr)
#define DEV_DATA(dev) \
((struct uart_miv_data * const)(dev)->driver_data)
static unsigned char uart_miv_poll_out(struct device *dev,
unsigned char c)
{
volatile struct uart_miv_regs_t *uart = DEV_UART(dev);
while (!(uart->status & STATUS_TXRDY_MASK))
;
uart->tx = c;
return c;
}
static int uart_miv_poll_in(struct device *dev, unsigned char *c)
{
volatile struct uart_miv_regs_t *uart = DEV_UART(dev);
if (uart->status & STATUS_RXFULL_MASK) {
*c = (unsigned char)(uart->rx & RXDATA_MASK);
return 0;
}
return -1;
}
static int uart_miv_err_check(struct device *dev)
{
volatile struct uart_miv_regs_t *uart = DEV_UART(dev);
u32_t flags = uart->status;
int err = 0;
if (flags & STATUS_PARITYERR_MASK) {
err |= UART_PARITY_ERROR;
}
if (flags & STATUS_OVERFLOW_MASK) {
err |= UART_OVERFLOW_ERROR;
}
if (flags & STATUS_FRAMERR_MASK) {
err |= UART_FRAMING_ERROR;
}
return err;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static int uart_miv_fifo_fill(struct device *dev,
const u8_t *tx_data,
int size)
{
volatile struct uart_miv_regs_t *uart = DEV_UART(dev);
int i;
for (i = 0; i < size && (uart->status & STATUS_TXRDY_MASK); i++) {
uart->tx = tx_data[i];
}
return i;
}
static int uart_miv_fifo_read(struct device *dev,
u8_t *rx_data,
const int size)
{
volatile struct uart_miv_regs_t *uart = DEV_UART(dev);
int i;
for (i = 0; i < size; i++) {
if (uart->status & STATUS_RXFULL_MASK) {
rx_data[i] = (unsigned char)(uart->rx & RXDATA_MASK);
} else {
break;
}
}
return i;
}
static void uart_miv_irq_tx_enable(struct device *dev)
{
ARG_UNUSED(dev);
}
static void uart_miv_irq_tx_disable(struct device *dev)
{
ARG_UNUSED(dev);
}
static int uart_miv_irq_tx_ready(struct device *dev)
{
volatile struct uart_miv_regs_t *uart = DEV_UART(dev);
return !(uart->status & STATUS_TXRDY_MASK);
}
static int uart_miv_irq_tx_complete(struct device *dev)
{
ARG_UNUSED(dev);
return 1;
}
static void uart_miv_irq_rx_enable(struct device *dev)
{
ARG_UNUSED(dev);
}
static void uart_miv_irq_rx_disable(struct device *dev)
{
ARG_UNUSED(dev);
}
static int uart_miv_irq_rx_ready(struct device *dev)
{
volatile struct uart_miv_regs_t *uart = DEV_UART(dev);
return !!(uart->status & STATUS_RXFULL_MASK);
}
static void uart_miv_irq_err_enable(struct device *dev)
{
ARG_UNUSED(dev);
}
static void uart_miv_irq_err_disable(struct device *dev)
{
ARG_UNUSED(dev);
}
static int uart_miv_irq_is_pending(struct device *dev)
{
volatile struct uart_miv_regs_t *uart = DEV_UART(dev);
return !!(uart->status & STATUS_RXFULL_MASK);
}
static int uart_miv_irq_update(struct device *dev)
{
return 1;
}
static void uart_miv_irq_handler(void *arg)
{
struct device *dev = (struct device *)arg;
struct uart_miv_data *data = DEV_DATA(dev);
if (data->callback) {
data->callback(data->cb_data);
}
}
/*
* This thread is a workaround for IRQs that are not connected in Mi-V.
* Since we cannot rely on IRQs, the rx_thread is working instead and
* polling for data. The thread calls the registered callback when data
* arrives.
*/
void uart_miv_rx_thread(void *arg1, void *arg2, void *arg3)
{
struct device *dev = (struct device *)arg1;
volatile struct uart_miv_regs_t *uart = DEV_UART(dev);
const struct uart_miv_device_config *const cfg = DEV_CFG(dev);
/* Make it go to sleep for a period no longer than
* time to receive next character.
*/
u32_t delay = 1000000 / cfg->baud_rate;
while (1) {
if (uart->status & STATUS_RXFULL_MASK) {
uart_miv_irq_handler(dev);
}
k_sleep(delay);
}
}
static void uart_miv_irq_callback_set(struct device *dev,
uart_irq_callback_user_data_t cb,
void *cb_data)
{
struct uart_miv_data *data = DEV_DATA(dev);
data->callback = cb;
data->cb_data = cb_data;
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static int uart_miv_init(struct device *dev)
{
const struct uart_miv_device_config *const cfg = DEV_CFG(dev);
volatile struct uart_miv_regs_t *uart = DEV_UART(dev);
/* Calculate divider value to set baudrate */
u16_t baud_value = (cfg->sys_clk_freq / (16 * cfg->baud_rate)) - 1;
/* Set baud rate */
uart->ctrlreg1 = (u8_t)(baud_value & BAUDVALUE_LSB);
uart->ctrlreg2 = (u8_t)(cfg->line_config) |
(u8_t)((baud_value & BAUDVALUE_MSB) >> BAUDVALUE_SHIFT);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
/* Setup thread polling for data */
cfg->cfg_func(dev);
#endif
return 0;
}
static const struct uart_driver_api uart_miv_driver_api = {
.poll_in = uart_miv_poll_in,
.poll_out = uart_miv_poll_out,
.err_check = uart_miv_err_check,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = uart_miv_fifo_fill,
.fifo_read = uart_miv_fifo_read,
.irq_tx_enable = uart_miv_irq_tx_enable,
.irq_tx_disable = uart_miv_irq_tx_disable,
.irq_tx_ready = uart_miv_irq_tx_ready,
.irq_tx_complete = uart_miv_irq_tx_complete,
.irq_rx_enable = uart_miv_irq_rx_enable,
.irq_rx_disable = uart_miv_irq_rx_disable,
.irq_rx_ready = uart_miv_irq_rx_ready,
.irq_err_enable = uart_miv_irq_err_enable,
.irq_err_disable = uart_miv_irq_err_disable,
.irq_is_pending = uart_miv_irq_is_pending,
.irq_update = uart_miv_irq_update,
.irq_callback_set = uart_miv_irq_callback_set,
#endif
};
#ifdef CONFIG_UART_MIV_PORT_0
static struct uart_miv_data uart_miv_data_0;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_miv_irq_cfg_func_0(struct device *dev);
#endif
static const struct uart_miv_device_config uart_miv_dev_cfg_0 = {
.uart_addr = MIV_UART_0_BASE_ADDR,
.sys_clk_freq = uart_miv_port_0_clk_freq,
.line_config = MIV_UART_0_LINECFG,
.baud_rate = CONFIG_UART_MIV_PORT_0_BAUD_RATE,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.cfg_func = uart_miv_irq_cfg_func_0,
#endif
};
DEVICE_AND_API_INIT(uart_miv_0, CONFIG_UART_MIV_PORT_0_NAME,
uart_miv_init, &uart_miv_data_0, &uart_miv_dev_cfg_0,
PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
(void *)&uart_miv_driver_api);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_miv_irq_cfg_func_0(struct device *dev)
{
/* Create a thread which will poll for data - replacement for IRQ */
k_thread_create(&rx_thread, rx_stack, 500,
uart_miv_rx_thread, dev, NULL, NULL, K_PRIO_COOP(2),
0, K_NO_WAIT);
}
#endif
#endif /* CONFIG_MIV_UART_0 */