zephyr/subsys/logging/log_core.c
Krzysztof Chruscinski 1d9e5ee108 logging: Refactoring 'in place' mode to reduce memory footprint
Changed 'in place' mode to bypass logger system and directly
call active backends. With this approach memory footprint of
the logger can be significantly reduced in terms of RAM and ROM.

Signed-off-by: Krzysztof Chruscinski <krzysztof.chruscinski@nordicsemi.no>
2019-01-29 17:24:37 +01:00

695 lines
14 KiB
C

/*
* Copyright (c) 2018 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <logging/log_msg.h>
#include "log_list.h"
#include <logging/log.h>
#include <logging/log_backend.h>
#include <logging/log_ctrl.h>
#include <logging/log_output.h>
#include <misc/printk.h>
#include <init.h>
#include <assert.h>
#include <atomic.h>
#ifndef CONFIG_LOG_PRINTK_MAX_STRING_LENGTH
#define CONFIG_LOG_PRINTK_MAX_STRING_LENGTH 1
#endif
#ifndef CONFIG_LOG_PROCESS_THREAD_SLEEP_MS
#define CONFIG_LOG_PROCESS_THREAD_SLEEP_MS 0
#endif
#ifndef CONFIG_LOG_PROCESS_TRIGGER_THRESHOLD
#define CONFIG_LOG_PROCESS_TRIGGER_THRESHOLD 0
#endif
#ifndef CONFIG_LOG_PROCESS_THREAD_STACK_SIZE
#define CONFIG_LOG_PROCESS_THREAD_STACK_SIZE 1
#endif
#ifndef CONFIG_LOG_STRDUP_MAX_STRING
#define CONFIG_LOG_STRDUP_MAX_STRING 0
#endif
#ifndef CONFIG_LOG_STRDUP_BUF_COUNT
#define CONFIG_LOG_STRDUP_BUF_COUNT 0
#endif
struct log_strdup_buf {
atomic_t refcount;
char buf[CONFIG_LOG_STRDUP_MAX_STRING + 1]; /* for termination */
};
#define LOG_STRDUP_POOL_BUFFER_SIZE \
(sizeof(struct log_strdup_buf) * CONFIG_LOG_STRDUP_BUF_COUNT)
static const char *log_strdup_fail_msg = "<log_strdup alloc failed>";
struct k_mem_slab log_strdup_pool;
static u8_t __noinit __aligned(sizeof(u32_t))
log_strdup_pool_buf[LOG_STRDUP_POOL_BUFFER_SIZE];
static struct log_list_t list;
static atomic_t initialized;
static bool panic_mode;
static bool backend_attached;
static atomic_t buffered_cnt;
static atomic_t dropped_cnt;
static k_tid_t proc_tid;
static u32_t dummy_timestamp(void);
static timestamp_get_t timestamp_func = dummy_timestamp;
static u32_t dummy_timestamp(void)
{
return 0;
}
static inline void msg_finalize(struct log_msg *msg,
struct log_msg_ids src_level)
{
unsigned int key;
msg->hdr.ids = src_level;
msg->hdr.timestamp = timestamp_func();
atomic_inc(&buffered_cnt);
key = irq_lock();
log_list_add_tail(&list, msg);
irq_unlock(key);
if (panic_mode) {
(void)log_process(false);
} else if (CONFIG_LOG_PROCESS_TRIGGER_THRESHOLD) {
if ((buffered_cnt == CONFIG_LOG_PROCESS_TRIGGER_THRESHOLD) &&
(proc_tid != NULL)) {
k_wakeup(proc_tid);
}
}
}
void log_0(const char *str, struct log_msg_ids src_level)
{
struct log_msg *msg = log_msg_create_0(str);
if (msg == NULL) {
return;
}
msg_finalize(msg, src_level);
}
void log_1(const char *str,
u32_t arg0,
struct log_msg_ids src_level)
{
struct log_msg *msg = log_msg_create_1(str, arg0);
if (msg == NULL) {
return;
}
msg_finalize(msg, src_level);
}
void log_2(const char *str,
u32_t arg0,
u32_t arg1,
struct log_msg_ids src_level)
{
struct log_msg *msg = log_msg_create_2(str, arg0, arg1);
if (msg == NULL) {
return;
}
msg_finalize(msg, src_level);
}
void log_3(const char *str,
u32_t arg0,
u32_t arg1,
u32_t arg2,
struct log_msg_ids src_level)
{
struct log_msg *msg = log_msg_create_3(str, arg0, arg1, arg2);
if (msg == NULL) {
return;
}
msg_finalize(msg, src_level);
}
void log_n(const char *str,
u32_t *args,
u32_t narg,
struct log_msg_ids src_level)
{
struct log_msg *msg = log_msg_create_n(str, args, narg);
if (msg == NULL) {
return;
}
msg_finalize(msg, src_level);
}
void log_hexdump(const char *str,
const u8_t *data,
u32_t length,
struct log_msg_ids src_level)
{
struct log_msg *msg = log_msg_hexdump_create(str, data, length);
if (msg == NULL) {
return;
}
msg_finalize(msg, src_level);
}
int log_printk(const char *fmt, va_list ap)
{
int length = 0;
if (IS_ENABLED(CONFIG_LOG_PRINTK)) {
struct log_msg_ids src_level = {
.level = LOG_LEVEL_INTERNAL_RAW_STRING
};
if (IS_ENABLED(CONFIG_LOG_IMMEDIATE)) {
log_generic(src_level, fmt, ap);
} else {
u8_t formatted_str[CONFIG_LOG_PRINTK_MAX_STRING_LENGTH];
struct log_msg *msg;
length = vsnprintk(formatted_str,
sizeof(formatted_str), fmt, ap);
length = min(length, sizeof(formatted_str));
msg = log_msg_hexdump_create(NULL, formatted_str,
length);
if (msg == NULL) {
return 0;
}
msg_finalize(msg, src_level);
}
}
return length;
}
/** @brief Count number of arguments in formatted string.
*
* Function counts number of '%' not followed by '%'.
*/
static u32_t count_args(const char *fmt)
{
u32_t args = 0U;
bool prev = false; /* if previous char was a modificator. */
while (*fmt != '\0') {
if (*fmt == '%') {
prev = !prev;
} else if (prev) {
args++;
prev = false;
}
fmt++;
}
return args;
}
void log_generic(struct log_msg_ids src_level, const char *fmt, va_list ap)
{
if (IS_ENABLED(CONFIG_LOG_IMMEDIATE)) {
struct log_backend const *backend;
u32_t timestamp = timestamp_func();
for (int i = 0; i < log_backend_count_get(); i++) {
backend = log_backend_get(i);
if (log_backend_is_active(backend)) {
log_backend_put_sync_string(backend, src_level,
timestamp, fmt, ap);
}
}
} else {
u32_t args[LOG_MAX_NARGS];
u32_t nargs = count_args(fmt);
for (int i = 0; i < nargs; i++) {
args[i] = va_arg(ap, u32_t);
}
log_n(fmt, args, nargs, src_level);
}
}
void log_string_sync(struct log_msg_ids src_level, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
log_generic(src_level, fmt, ap);
va_end(ap);
}
void log_hexdump_sync(struct log_msg_ids src_level, const char *metadata,
const u8_t *data, u32_t len)
{
struct log_backend const *backend;
u32_t timestamp = timestamp_func();
for (int i = 0; i < log_backend_count_get(); i++) {
backend = log_backend_get(i);
if (log_backend_is_active(backend)) {
log_backend_put_sync_hexdump(backend, src_level,
timestamp, metadata,
data, len);
}
}
}
static u32_t timestamp_get(void)
{
return k_cycle_get_32();
}
void log_core_init(void)
{
if (!IS_ENABLED(CONFIG_LOG_IMMEDIATE)) {
log_msg_pool_init();
log_list_init(&list);
k_mem_slab_init(&log_strdup_pool, log_strdup_pool_buf,
sizeof(struct log_strdup_buf),
CONFIG_LOG_STRDUP_BUF_COUNT);
}
/* Set default timestamp. */
timestamp_func = timestamp_get;
log_output_timestamp_freq_set(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);
/*
* Initialize aggregated runtime filter levels (no backends are
* attached yet, so leave backend slots in each dynamic filter set
* alone for now).
*
* Each log source's aggregated runtime level is set to match its
* compile-time level. When backends are attached later on in
* log_init(), they'll be initialized to the same value.
*/
if (IS_ENABLED(CONFIG_LOG_RUNTIME_FILTERING)) {
for (int i = 0; i < log_sources_count(); i++) {
u32_t *filters = log_dynamic_filters_get(i);
u8_t level = log_compiled_level_get(i);
LOG_FILTER_SLOT_SET(filters,
LOG_FILTER_AGGR_SLOT_IDX,
level);
}
}
}
void log_init(void)
{
assert(log_backend_count_get() < LOG_FILTERS_NUM_OF_SLOTS);
int i;
if (atomic_inc(&initialized) != 0) {
return;
}
/* Assign ids to backends. */
for (i = 0; i < log_backend_count_get(); i++) {
const struct log_backend *backend = log_backend_get(i);
if (backend->autostart) {
if (backend->api->init != NULL) {
backend->api->init();
}
log_backend_enable(backend, NULL, CONFIG_LOG_MAX_LEVEL);
}
}
}
static void thread_set(k_tid_t process_tid)
{
proc_tid = process_tid;
if (!IS_ENABLED(CONFIG_LOG_IMMEDIATE) &&
CONFIG_LOG_PROCESS_TRIGGER_THRESHOLD &&
process_tid &&
buffered_cnt >= CONFIG_LOG_PROCESS_TRIGGER_THRESHOLD) {
k_wakeup(proc_tid);
}
}
void log_thread_set(k_tid_t process_tid)
{
if (IS_ENABLED(CONFIG_LOG_PROCESS_THREAD)) {
assert(0);
} else {
thread_set(process_tid);
}
}
int log_set_timestamp_func(timestamp_get_t timestamp_getter, u32_t freq)
{
if (!timestamp_getter) {
return -EINVAL;
}
timestamp_func = timestamp_getter;
log_output_timestamp_freq_set(freq);
return 0;
}
void log_panic(void)
{
struct log_backend const *backend;
if (panic_mode) {
return;
}
for (int i = 0; i < log_backend_count_get(); i++) {
backend = log_backend_get(i);
if (log_backend_is_active(backend)) {
log_backend_panic(backend);
}
}
panic_mode = true;
if (!IS_ENABLED(CONFIG_LOG_IMMEDIATE)) {
/* Flush */
while (log_process(false) == true) {
}
}
}
static bool msg_filter_check(struct log_backend const *backend,
struct log_msg *msg)
{
if (IS_ENABLED(CONFIG_LOG_RUNTIME_FILTERING)) {
u32_t backend_level;
u32_t msg_level;
backend_level = log_filter_get(backend,
log_msg_domain_id_get(msg),
log_msg_source_id_get(msg),
true /*enum RUNTIME, COMPILETIME*/);
msg_level = log_msg_level_get(msg);
return (msg_level <= backend_level);
} else {
return true;
}
}
static void msg_process(struct log_msg *msg, bool bypass)
{
struct log_backend const *backend;
if (!bypass) {
for (int i = 0; i < log_backend_count_get(); i++) {
backend = log_backend_get(i);
if (log_backend_is_active(backend) &&
msg_filter_check(backend, msg)) {
log_backend_put(backend, msg);
}
}
} else {
atomic_inc(&dropped_cnt);
}
log_msg_put(msg);
}
void dropped_notify(void)
{
u32_t dropped = atomic_set(&dropped_cnt, 0);
for (int i = 0; i < log_backend_count_get(); i++) {
struct log_backend const *backend = log_backend_get(i);
if (log_backend_is_active(backend)) {
log_backend_dropped(backend, dropped);
}
}
}
bool log_process(bool bypass)
{
struct log_msg *msg;
if (!backend_attached && !bypass) {
return false;
}
unsigned int key = irq_lock();
msg = log_list_head_get(&list);
irq_unlock(key);
if (msg != NULL) {
atomic_dec(&buffered_cnt);
msg_process(msg, bypass);
}
if (!bypass && dropped_cnt) {
dropped_notify();
}
return (log_list_head_peek(&list) != NULL);
}
u32_t log_buffered_cnt(void)
{
return buffered_cnt;
}
u32_t log_src_cnt_get(u32_t domain_id)
{
return log_sources_count();
}
const char *log_source_name_get(u32_t domain_id, u32_t src_id)
{
return src_id < log_sources_count() ? log_name_get(src_id) : NULL;
}
static u32_t max_filter_get(u32_t filters)
{
u32_t max_filter = LOG_LEVEL_NONE;
int first_slot = LOG_FILTER_FIRST_BACKEND_SLOT_IDX;
int i;
for (i = first_slot; i < LOG_FILTERS_NUM_OF_SLOTS; i++) {
u32_t tmp_filter = LOG_FILTER_SLOT_GET(&filters, i);
if (tmp_filter > max_filter) {
max_filter = tmp_filter;
}
}
return max_filter;
}
u32_t log_filter_set(struct log_backend const *const backend,
u32_t domain_id,
u32_t src_id,
u32_t level)
{
assert(src_id < log_sources_count());
if (IS_ENABLED(CONFIG_LOG_RUNTIME_FILTERING)) {
u32_t new_aggr_filter;
u32_t *filters = log_dynamic_filters_get(src_id);
if (backend == NULL) {
struct log_backend const *backend;
u32_t max = 0U;
u32_t current;
for (int i = 0; i < log_backend_count_get(); i++) {
backend = log_backend_get(i);
current = log_filter_set(backend, domain_id,
src_id, level);
max = max(current, max);
}
level = max;
} else {
u32_t max = log_filter_get(backend, domain_id,
src_id, false);
level = min(level, max);
LOG_FILTER_SLOT_SET(filters,
log_backend_id_get(backend),
level);
/* Once current backend filter is updated recalculate
* aggregated maximal level
*/
new_aggr_filter = max_filter_get(*filters);
LOG_FILTER_SLOT_SET(filters,
LOG_FILTER_AGGR_SLOT_IDX,
new_aggr_filter);
}
}
return level;
}
static void backend_filter_set(struct log_backend const *const backend,
u32_t level)
{
if (IS_ENABLED(CONFIG_LOG_RUNTIME_FILTERING)) {
for (int i = 0; i < log_sources_count(); i++) {
log_filter_set(backend,
CONFIG_LOG_DOMAIN_ID,
i,
level);
}
}
}
void log_backend_enable(struct log_backend const *const backend,
void *ctx,
u32_t level)
{
/* As first slot in filtering mask is reserved, backend ID has offset.*/
u32_t id = LOG_FILTER_FIRST_BACKEND_SLOT_IDX;
id += backend - log_backend_get(0);
log_backend_id_set(backend, id);
backend_filter_set(backend, level);
log_backend_activate(backend, ctx);
backend_attached = true;
}
void log_backend_disable(struct log_backend const *const backend)
{
log_backend_deactivate(backend);
backend_filter_set(backend, LOG_LEVEL_NONE);
}
u32_t log_filter_get(struct log_backend const *const backend,
u32_t domain_id,
u32_t src_id,
bool runtime)
{
assert(src_id < log_sources_count());
if (IS_ENABLED(CONFIG_LOG_RUNTIME_FILTERING) && runtime) {
u32_t *filters = log_dynamic_filters_get(src_id);
return LOG_FILTER_SLOT_GET(filters,
log_backend_id_get(backend));
} else {
return log_compiled_level_get(src_id);
}
}
char *log_strdup(const char *str)
{
struct log_strdup_buf *dup;
int err;
if (IS_ENABLED(CONFIG_LOG_IMMEDIATE)) {
return (char *)str;
}
err = k_mem_slab_alloc(&log_strdup_pool, (void **)&dup, K_NO_WAIT);
if (err != 0) {
/* failed to allocate */
return (char *)log_strdup_fail_msg;
}
/* Set 'allocated' flag. */
(void)atomic_set(&dup->refcount, 1);
strncpy(dup->buf, str, sizeof(dup->buf) - 2);
dup->buf[sizeof(dup->buf) - 2] = '~';
dup->buf[sizeof(dup->buf) - 1] = '\0';
return dup->buf;
}
bool log_is_strdup(void *buf)
{
struct log_strdup_buf *pool_first, *pool_last;
pool_first = (struct log_strdup_buf *)log_strdup_pool_buf;
pool_last = pool_first + CONFIG_LOG_STRDUP_BUF_COUNT - 1;
return ((char *)buf >= pool_first->buf) &&
((char *)buf <= pool_last->buf);
}
void log_free(void *str)
{
struct log_strdup_buf *dup = CONTAINER_OF(str, struct log_strdup_buf,
buf);
if (atomic_dec(&dup->refcount) == 1) {
k_mem_slab_free(&log_strdup_pool, (void **)&dup);
}
}
static void log_process_thread_func(void *dummy1, void *dummy2, void *dummy3)
{
log_init();
thread_set(k_current_get());
while (true) {
if (log_process(false) == false) {
k_sleep(CONFIG_LOG_PROCESS_THREAD_SLEEP_MS);
}
}
}
K_THREAD_STACK_DEFINE(logging_stack, CONFIG_LOG_PROCESS_THREAD_STACK_SIZE);
struct k_thread logging_thread;
static int enable_logger(struct device *arg)
{
ARG_UNUSED(arg);
if (IS_ENABLED(CONFIG_LOG_PROCESS_THREAD)) {
/* start logging thread */
k_thread_create(&logging_thread, logging_stack,
K_THREAD_STACK_SIZEOF(logging_stack),
log_process_thread_func, NULL, NULL, NULL,
K_LOWEST_APPLICATION_THREAD_PRIO, 0, K_NO_WAIT);
k_thread_name_set(&logging_thread, "logging");
} else {
log_init();
}
return 0;
}
SYS_INIT(enable_logger, POST_KERNEL, 0);