zephyr/scripts/gen_kobject_list.py
Andrew Boie 6093a94454 gen_kobject_list: fix on ARM targets
On ARM, a zero memory address actually falls within the expected bounds
of kernel memory.

Move the NULL check outside the bounds check, so that kernel objects
with NULL memory addresses in the DWARF info (because gc-sections
discarded them) won't confound the script's logic.

Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
2017-10-11 15:39:08 -07:00

552 lines
15 KiB
Python
Executable File

#!/usr/bin/env python3
#
# Copyright (c) 2017 Intel Corporation
#
# SPDX-License-Identifier: Apache-2.0
import sys
import argparse
import pprint
import os
import struct
from distutils.version import LooseVersion
import elftools
from elftools.elf.elffile import ELFFile
from elftools.dwarf import descriptions
from elftools.elf.sections import SymbolTableSection
if LooseVersion(elftools.__version__) < LooseVersion('0.24'):
sys.stderr.write("pyelftools is out of date, need version 0.24 or later\n")
sys.exit(1)
kobjects = [
"k_alert",
"k_msgq",
"k_mutex",
"k_pipe",
"k_sem",
"k_stack",
"k_thread",
"k_timer",
"device"
]
subsystems = [
"adc_driver_api",
"aio_cmp_driver_api",
"clock_control_driver_api",
"counter_driver_api",
"crypto_driver_api",
"dma_driver_api",
"eth_driver_api",
"flash_driver_api",
"gpio_driver_api",
"i2c_driver_api",
"i2s_driver_api",
"ipm_driver_api",
"pinmux_driver_api",
"pwm_driver_api",
"random_driver_api",
"rtc_driver_api",
"sensor_driver_api",
"shared_irq_driver_api",
"spi_driver_api",
"uart_driver_api",
"wdt_driver_api",
]
def subsystem_to_enum(subsys):
return "K_OBJ_DRIVER_" + subsys[:-11].upper()
def kobject_to_enum(ko):
return "K_OBJ_" + ko[2:].upper()
DW_OP_addr = 0x3
DW_OP_fbreg = 0x91
# Global type environment. Populated by pass 1.
type_env = {}
# --- debug stuff ---
scr = os.path.basename(sys.argv[0])
def debug(text):
if not args.verbose:
return
sys.stdout.write(scr + ": " + text + "\n")
def error(text):
sys.stderr.write("%s ERROR: %s\n" % (scr, text))
sys.exit(1)
def debug_die(die, text):
fn, ln = get_filename_lineno(die)
debug(str(die))
debug("File '%s', line %d:" % (fn, ln))
debug(" %s" % text)
# --- type classes ----
class ArrayType:
def __init__(self, offset, num_members, member_type):
self.num_members = num_members
self.member_type = member_type
self.offset = offset
def __repr__(self):
return "<array of %d, size %d>" % (self.member_type, self.num_members)
def has_kobject(self):
if self.member_type not in type_env:
return False
return type_env[self.member_type].has_kobject()
def get_kobjects(self, addr):
mt = type_env[self.member_type]
objs = {}
for i in range(self.num_members):
objs.update(mt.get_kobjects(addr + (i * mt.size)))
return objs
class AggregateTypeMember:
def __init__(self, offset, member_name, member_type, member_offset):
self.member_name = member_name
self.member_type = member_type
self.member_offset = member_offset
def __repr__(self):
return "<member %s, type %d, offset %d>" % (self.member_name,
self.member_type, self.member_offset)
def has_kobject(self):
if self.member_type not in type_env:
return False
return type_env[self.member_type].has_kobject()
def get_kobjects(self, addr):
mt = type_env[self.member_type]
return mt.get_kobjects(addr + self.member_offset)
class ConstType:
def __init__(self, child_type):
self.child_type = child_type
def __repr__(self):
return "<const %d>" % self.child_type
def has_kobject(self):
if self.child_type not in type_env:
return False
return type_env[self.child_type].has_kobject()
def get_kobjects(self, addr):
return type_env[self.child_type].get_kobjects(addr)
class AggregateType:
def __init__(self, offset, name, size):
self.name = name
self.size = size
self.offset = offset
self.members = []
def add_member(self, member):
self.members.append(member)
def __repr__(self):
return "<struct %s, with %s>" % (self.name, self.members)
def has_kobject(self):
result = False
bad_members = []
for member in self.members:
if member.has_kobject():
result = True
else:
bad_members.append(member)
# Don't need to consider this again, just remove it
for bad_member in bad_members:
self.members.remove(bad_member)
return result
def get_kobjects(self, addr):
objs = {}
for member in self.members:
objs.update(member.get_kobjects(addr))
return objs
class KobjectType:
def __init__(self, offset, name, size, api=False):
self.name = name
self.size = size
self.offset = offset
self.api = api
def __repr__(self):
return "<kobject %s>" % self.name
def has_kobject(self):
return True
def get_kobjects(self, addr):
return {addr: self}
# --- helper functions for getting data from DIEs ---
def die_get_name(die):
if not 'DW_AT_name' in die.attributes:
return None
return die.attributes["DW_AT_name"].value.decode("utf-8")
def die_get_type_offset(die):
if not 'DW_AT_type' in die.attributes:
return 0
return die.attributes["DW_AT_type"].value + die.cu.cu_offset
def die_get_byte_size(die):
if not 'DW_AT_byte_size' in die.attributes:
return 0
return die.attributes["DW_AT_byte_size"].value
def analyze_die_struct(die):
name = die_get_name(die) or "<anon>"
offset = die.offset
size = die_get_byte_size(die)
# Incomplete type
if not size:
return
if name in kobjects:
type_env[offset] = KobjectType(offset, name, size)
elif name in subsystems:
type_env[offset] = KobjectType(offset, name, size, api=True)
else:
at = AggregateType(offset, name, size)
type_env[offset] = at
for child in die.iter_children():
if child.tag != "DW_TAG_member":
continue
child_type = die_get_type_offset(child)
member_offset = child.attributes["DW_AT_data_member_location"].value
cname = die_get_name(child) or "<anon>"
m = AggregateTypeMember(child.offset, cname, child_type,
member_offset)
at.add_member(m)
return
def analyze_die_const(die):
type_offset = die_get_type_offset(die)
if not type_offset:
return
type_env[die.offset] = ConstType(type_offset)
def analyze_die_array(die):
type_offset = die_get_type_offset(die)
elements = 1
size_found = False
for child in die.iter_children():
if child.tag != "DW_TAG_subrange_type":
continue
if "DW_AT_upper_bound" not in child.attributes:
continue
ub = child.attributes["DW_AT_upper_bound"]
if not ub.form.startswith("DW_FORM_data"):
continue
size_found = True
elements = elements * (ub.value + 1)
if not size_found:
return
type_env[die.offset] = ArrayType(die.offset, elements, type_offset)
def addr_deref(elf, addr):
for section in elf.iter_sections():
start = section['sh_addr']
end = start + section['sh_size']
if addr >= start and addr < end:
data = section.data()
offset = addr - start
return struct.unpack("<I" if args.little_endian else ">I",
data[offset:offset+4])[0]
return 0
def device_get_api_addr(elf, addr):
return addr_deref(elf, addr + 4)
def get_filename_lineno(die):
lp_header = die.dwarfinfo.line_program_for_CU(die.cu).header
files = lp_header["file_entry"]
includes = lp_header["include_directory"]
fileinfo = files[die.attributes["DW_AT_decl_file"].value - 1]
filename = fileinfo.name.decode("utf-8")
filedir = includes[fileinfo.dir_index - 1].decode("utf-8")
path = os.path.join(filedir, filename)
lineno = die.attributes["DW_AT_decl_line"].value
return (path, lineno)
def find_kobjects(elf, syms):
if not elf.has_dwarf_info():
sys.stderr.write("ELF file has no DWARF information\n");
sys.exit(1)
kram_start = syms["__kernel_ram_start"]
kram_end = syms["__kernel_ram_end"]
krom_start = syms["_image_rom_start"]
krom_end = syms["_image_rom_end"]
di = elf.get_dwarf_info()
variables = []
# Step 1: collect all type information.
for CU in di.iter_CUs():
CU_path = CU.get_top_DIE().get_full_path()
lp = di.line_program_for_CU(CU)
for idx, die in enumerate(CU.iter_DIEs()):
# Unions are disregarded, kernel objects should never be union
# members since the memory is not dedicated to that object and
# could be something else
if die.tag == "DW_TAG_structure_type":
analyze_die_struct(die)
elif die.tag == "DW_TAG_const_type":
analyze_die_const(die)
elif die.tag == "DW_TAG_array_type":
analyze_die_array(die)
elif die.tag == "DW_TAG_variable":
variables.append(die)
# Step 2: filter type_env to only contain kernel objects, or structs and
# arrays of kernel objects
bad_offsets = []
for offset, type_object in type_env.items():
if not type_object.has_kobject():
bad_offsets.append(offset)
for offset in bad_offsets:
del type_env[offset]
# Step 3: Now that we know all the types we are looking for, examine
# all variables
all_objs = {}
# Gross hack, see below
work_q_found = False
for die in variables:
name = die_get_name(die)
if not name:
continue
type_offset = die_get_type_offset(die)
# Is this a kernel object, or a structure containing kernel objects?
if type_offset not in type_env:
continue
if "DW_AT_declaration" in die.attributes:
# FIXME: why does k_sys_work_q not resolve an address in the DWARF
# data??? Every single instance it finds is an extern definition
# but not the actual instance in system_work_q.c
# Is there something weird about how lib-y stuff is linked?
if name == "k_sys_work_q" and not work_q_found and name in syms:
addr = syms[name]
work_q_found = True
else:
continue
else:
if "DW_AT_location" not in die.attributes:
debug_die(die, "No location information for object '%s'; possibly stack allocated"
% name)
continue
loc = die.attributes["DW_AT_location"]
if loc.form != "DW_FORM_exprloc":
debug_die(die, "kernel object '%s' unexpected location format" % name)
continue
opcode = loc.value[0]
if opcode != DW_OP_addr:
# Check if frame pointer offset DW_OP_fbreg
if opcode == DW_OP_fbreg:
debug_die(die, "kernel object '%s' found on stack" % name)
else:
debug_die(die, "kernel object '%s' unexpected exprloc opcode %s"
% (name, hex(opcode)))
continue
addr = (loc.value[1] | (loc.value[2] << 8) | (loc.value[3] << 16) |
(loc.value[4] << 24))
if addr == 0:
# Never linked; gc-sections deleted it
continue
if ((addr < kram_start or addr >= kram_end)
and (addr < krom_start or addr >= krom_end)):
debug_die(die, "object '%s' found in invalid location %s" %
(name, hex(addr)));
continue
type_obj = type_env[type_offset]
objs = type_obj.get_kobjects(addr)
all_objs.update(objs)
debug("symbol '%s' at %s contains %d object(s)" % (name, hex(addr),
len(objs)))
# Step 4: objs is a dictionary mapping variable memory addresses to their
# associated type objects. Now that we have seen all variables and can
# properly look up API structs, convert this into a dictionary mapping
# variables to the C enumeration of what kernel object type it is.
ret = {}
for addr, ko in all_objs.items():
# API structs don't get into the gperf table
if ko.api:
continue
if ko.name != "device":
# Not a device struct so we immediately know its type
ret[addr] = kobject_to_enum(ko.name)
continue
# Device struct. Need to get the address of its API struct, if it has
# one.
apiaddr = device_get_api_addr(elf, addr)
if apiaddr not in all_objs:
# API struct does not correspond to a known subsystem, skip it
continue
apiobj = all_objs[apiaddr]
ret[addr] = subsystem_to_enum(apiobj.name)
debug("found %d kernel object instances total" % len(ret))
return ret
header = """%compare-lengths
%define lookup-function-name _k_object_lookup
%language=ANSI-C
%struct-type
%{
#include <kernel.h>
#include <string.h>
%}
struct _k_object;
%%
"""
# Different versions of gperf have different prototypes for the lookup function,
# best to implement the wrapper here. The pointer value itself is turned into
# a string, we told gperf to expect binary strings that are not NULL-terminated.
footer = """%%
struct _k_object *_k_object_find(void *obj)
{
return _k_object_lookup((const char *)obj, sizeof(void *));
}
"""
def write_gperf_table(fp, objs, static_begin, static_end):
fp.write(header)
for obj_addr, obj_type in objs.items():
# pre-initialized objects fall within this memory range, they are
# either completely initialized at build time, or done automatically
# at boot during some PRE_KERNEL_* phase
initialized = obj_addr >= static_begin and obj_addr < static_end
byte_str = struct.pack("<I" if args.little_endian else ">I", obj_addr)
fp.write("\"")
for byte in byte_str:
val = "\\x%02x" % byte
fp.write(val)
fp.write("\",{},%s,%s\n" % (obj_type,
"K_OBJ_FLAG_INITIALIZED" if initialized else "0"))
fp.write(footer)
def get_symbols(obj):
for section in obj.iter_sections():
if isinstance(section, SymbolTableSection):
return {sym.name: sym.entry.st_value
for sym in section.iter_symbols()}
raise LookupError("Could not find symbol table")
def parse_args():
global args
parser = argparse.ArgumentParser(description = __doc__,
formatter_class = argparse.RawDescriptionHelpFormatter)
parser.add_argument("-k", "--kernel", required=True,
help="Input zephyr ELF binary")
parser.add_argument("-o", "--output", required=True,
help="Output list of kernel object addresses for gperf use")
parser.add_argument("-v", "--verbose", action="store_true",
help="Print extra debugging information")
args = parser.parse_args()
def main():
parse_args()
with open(args.kernel, "rb") as fp:
elf = ELFFile(fp)
args.little_endian = elf.little_endian
syms = get_symbols(elf)
objs = find_kobjects(elf, syms)
with open(args.output, "w") as fp:
write_gperf_table(fp, objs, syms["_static_kernel_objects_begin"],
syms["_static_kernel_objects_end"])
if __name__ == "__main__":
main()