zephyr/drivers/clock_control/nrf_power_clock.c
Krzysztof Chruscinski 510102dd71 soc: arm: nordic_nrf: nrf52: Add workaround for anomaly 132
Added delay before starting low frequency clock for the first time to
ensure that anomaly conditions are not met. Delay is configurable and
might be disabled.

Signed-off-by: Krzysztof Chruscinski <krzysztof.chruscinski@nordicsemi.no>
2020-01-29 15:38:55 +01:00

497 lines
13 KiB
C

/*
* Copyright (c) 2016-2019 Nordic Semiconductor ASA
* Copyright (c) 2016 Vinayak Kariappa Chettimada
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <soc.h>
#include <drivers/clock_control.h>
#include <drivers/clock_control/nrf_clock_control.h>
#include "nrf_clock_calibration.h"
#include <logging/log.h>
#include <hal/nrf_power.h>
LOG_MODULE_REGISTER(clock_control, CONFIG_CLOCK_CONTROL_LOG_LEVEL);
/* Helper logging macros which prepends subsys name to the log. */
#ifdef CONFIG_LOG
#define CLOCK_LOG(lvl, dev, subsys, ...) \
LOG_##lvl("%s: " GET_ARG1(__VA_ARGS__), \
get_sub_config(dev, (enum clock_control_nrf_type)subsys)->name \
COND_CODE_0(NUM_VA_ARGS_LESS_1(__VA_ARGS__),\
(), (, GET_ARGS_LESS_1(__VA_ARGS__))))
#else
#define CLOCK_LOG(...)
#endif
#define ERR(dev, subsys, ...) CLOCK_LOG(ERR, dev, subsys, __VA_ARGS__)
#define WRN(dev, subsys, ...) CLOCK_LOG(WRN, dev, subsys, __VA_ARGS__)
#define INF(dev, subsys, ...) CLOCK_LOG(INF, dev, subsys, __VA_ARGS__)
#define DBG(dev, subsys, ...) CLOCK_LOG(DBG, dev, subsys, __VA_ARGS__)
/* returns true if clock stopping or starting can be performed. If false then
* start/stop will be deferred and performed later on by handler owner.
*/
typedef bool (*nrf_clock_handler_t)(struct device *dev);
/* Clock subsys structure */
struct nrf_clock_control_sub_data {
sys_slist_t list; /* List of users requesting callback */
u8_t ref; /* Users counter */
bool started; /* Indicated that clock is started */
};
/* Clock subsys static configuration */
struct nrf_clock_control_sub_config {
nrf_clock_handler_t start_handler; /* Called before start */
nrf_clock_handler_t stop_handler; /* Called before stop */
nrf_clock_event_t started_evt; /* Clock started event */
nrf_clock_task_t start_tsk; /* Clock start task */
nrf_clock_task_t stop_tsk; /* Clock stop task */
#ifdef CONFIG_LOG
const char *name;
#endif
};
struct nrf_clock_control_data {
struct nrf_clock_control_sub_data subsys[CLOCK_CONTROL_NRF_TYPE_COUNT];
};
struct nrf_clock_control_config {
struct nrf_clock_control_sub_config
subsys[CLOCK_CONTROL_NRF_TYPE_COUNT];
};
static void clkstarted_handle(struct device *dev,
enum clock_control_nrf_type type);
/* Return true if given event has enabled interrupt and is triggered. Event
* is cleared.
*/
static bool clock_event_check_and_clean(nrf_clock_event_t evt, u32_t intmask)
{
bool ret = nrf_clock_event_check(NRF_CLOCK, evt) &&
nrf_clock_int_enable_check(NRF_CLOCK, intmask);
if (ret) {
nrf_clock_event_clear(NRF_CLOCK, evt);
}
return ret;
}
static void clock_irqs_disable(void)
{
nrf_clock_int_disable(NRF_CLOCK,
(NRF_CLOCK_INT_HF_STARTED_MASK |
NRF_CLOCK_INT_LF_STARTED_MASK |
COND_CODE_1(CONFIG_USB_NRFX,
(NRF_POWER_INT_USBDETECTED_MASK |
NRF_POWER_INT_USBREMOVED_MASK |
NRF_POWER_INT_USBPWRRDY_MASK),
(0))));
}
static void clock_irqs_enable(void)
{
nrf_clock_int_enable(NRF_CLOCK,
(NRF_CLOCK_INT_HF_STARTED_MASK |
NRF_CLOCK_INT_LF_STARTED_MASK |
COND_CODE_1(CONFIG_USB_NRFX,
(NRF_POWER_INT_USBDETECTED_MASK |
NRF_POWER_INT_USBREMOVED_MASK |
NRF_POWER_INT_USBPWRRDY_MASK),
(0))));
}
static struct nrf_clock_control_sub_data *get_sub_data(struct device *dev,
enum clock_control_nrf_type type)
{
struct nrf_clock_control_data *data = dev->driver_data;
return &data->subsys[type];
}
static const struct nrf_clock_control_sub_config *get_sub_config(
struct device *dev,
enum clock_control_nrf_type type)
{
const struct nrf_clock_control_config *config =
dev->config->config_info;
return &config->subsys[type];
}
static enum clock_control_status get_status(struct device *dev,
clock_control_subsys_t subsys)
{
enum clock_control_nrf_type type = (enum clock_control_nrf_type)subsys;
struct nrf_clock_control_sub_data *data;
__ASSERT_NO_MSG(type < CLOCK_CONTROL_NRF_TYPE_COUNT);
data = get_sub_data(dev, type);
if (data->started) {
return CLOCK_CONTROL_STATUS_ON;
}
if (data->ref > 0) {
return CLOCK_CONTROL_STATUS_STARTING;
}
return CLOCK_CONTROL_STATUS_OFF;
}
static int clock_stop(struct device *dev, clock_control_subsys_t subsys)
{
enum clock_control_nrf_type type = (enum clock_control_nrf_type)subsys;
const struct nrf_clock_control_sub_config *config;
struct nrf_clock_control_sub_data *data;
int err = 0;
int key;
__ASSERT_NO_MSG(type < CLOCK_CONTROL_NRF_TYPE_COUNT);
config = get_sub_config(dev, type);
data = get_sub_data(dev, type);
key = irq_lock();
if (data->ref == 0) {
err = -EALREADY;
goto out;
}
data->ref--;
if (data->ref == 0) {
bool do_stop;
DBG(dev, subsys, "Stopping");
sys_slist_init(&data->list);
do_stop = (config->stop_handler) ?
config->stop_handler(dev) : true;
if (do_stop) {
nrf_clock_task_trigger(NRF_CLOCK, config->stop_tsk);
/* It may happen that clock is being stopped when it
* has just been started and start is not yet handled
* (due to irq_lock). In that case after stopping the
* clock, started event is cleared to prevent false
* interrupt being triggered.
*/
nrf_clock_event_clear(NRF_CLOCK, config->started_evt);
}
data->started = false;
}
out:
irq_unlock(key);
return err;
}
static bool is_in_list(sys_slist_t *list, sys_snode_t *node)
{
sys_snode_t *item = sys_slist_peek_head(list);
do {
if (item == node) {
return true;
}
item = sys_slist_peek_next(item);
} while (item);
return false;
}
static void list_append(sys_slist_t *list, sys_snode_t *node)
{
int key;
key = irq_lock();
sys_slist_append(list, node);
irq_unlock(key);
}
static struct clock_control_async_data *list_get(sys_slist_t *list)
{
struct clock_control_async_data *async_data;
sys_snode_t *node;
int key;
key = irq_lock();
node = sys_slist_get(list);
irq_unlock(key);
async_data = CONTAINER_OF(node,
struct clock_control_async_data, node);
return async_data;
}
static inline void anomaly_132_workaround(void)
{
#if (CONFIG_NRF52_ANOMALY_132_DELAY_US - 0)
static bool once;
if (!once) {
k_busy_wait(CONFIG_NRF52_ANOMALY_132_DELAY_US);
once = true;
}
#endif
}
static int clock_async_start(struct device *dev,
clock_control_subsys_t subsys,
struct clock_control_async_data *data)
{
enum clock_control_nrf_type type = (enum clock_control_nrf_type)subsys;
const struct nrf_clock_control_sub_config *config;
struct nrf_clock_control_sub_data *clk_data;
int key;
u8_t ref;
__ASSERT_NO_MSG(type < CLOCK_CONTROL_NRF_TYPE_COUNT);
config = get_sub_config(dev, type);
clk_data = get_sub_data(dev, type);
__ASSERT_NO_MSG((data == NULL) ||
((data != NULL) && (data->cb != NULL)));
/* if node is in the list it means that it is scheduled for
* the second time.
*/
if ((data != NULL)
&& is_in_list(&clk_data->list, &data->node)) {
return -EBUSY;
}
key = irq_lock();
ref = ++clk_data->ref;
__ASSERT_NO_MSG(clk_data->ref > 0);
irq_unlock(key);
if (data) {
bool already_started;
clock_irqs_disable();
already_started = clk_data->started;
if (!already_started) {
list_append(&clk_data->list, &data->node);
}
clock_irqs_enable();
if (already_started) {
data->cb(dev, data->user_data);
}
}
if (ref == 1) {
bool do_start;
do_start = (config->start_handler) ?
config->start_handler(dev) : true;
if (do_start) {
DBG(dev, subsys, "Triggering start task");
if (IS_ENABLED(CONFIG_NRF52_ANOMALY_132_WORKAROUND) &&
(subsys == CLOCK_CONTROL_NRF_SUBSYS_LF)) {
anomaly_132_workaround();
}
nrf_clock_task_trigger(NRF_CLOCK,
config->start_tsk);
} else {
/* If external start_handler indicated that clcok is
* still running (it may happen in case of LF RC clock
* which was requested to be stopped during ongoing
* calibration (clock will not be stopped in that case)
* and requested to be started before calibration is
* completed. In that case clock is still running and
* we can notify enlisted requests.
*/
clkstarted_handle(dev, type);
}
}
return 0;
}
static int clock_start(struct device *dev, clock_control_subsys_t sub_system)
{
return clock_async_start(dev, sub_system, NULL);
}
/* Note: this function has public linkage, and MUST have this
* particular name. The platform architecture itself doesn't care,
* but there is a test (tests/kernel/arm_irq_vector_table) that needs
* to find it to it can set it in a custom vector table. Should
* probably better abstract that at some point (e.g. query and reset
* it by pointer at runtime, maybe?) so we don't have this leaky
* symbol.
*/
void nrf_power_clock_isr(void *arg);
static int clk_init(struct device *dev)
{
IRQ_CONNECT(DT_INST_0_NORDIC_NRF_CLOCK_IRQ_0,
DT_INST_0_NORDIC_NRF_CLOCK_IRQ_0_PRIORITY,
nrf_power_clock_isr, 0, 0);
irq_enable(DT_INST_0_NORDIC_NRF_CLOCK_IRQ_0);
nrf_clock_lf_src_set(NRF_CLOCK, CLOCK_CONTROL_NRF_K32SRC);
if (IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_K32SRC_RC_CALIBRATION)) {
z_nrf_clock_calibration_init(dev);
}
clock_irqs_enable();
for (enum clock_control_nrf_type i = 0;
i < CLOCK_CONTROL_NRF_TYPE_COUNT; i++) {
sys_slist_init(&(get_sub_data(dev, i)->list));
}
return 0;
}
static const struct clock_control_driver_api clock_control_api = {
.on = clock_start,
.off = clock_stop,
.async_on = clock_async_start,
.get_status = get_status,
};
static struct nrf_clock_control_data data;
static const struct nrf_clock_control_config config = {
.subsys = {
[CLOCK_CONTROL_NRF_TYPE_HFCLK] = {
.start_tsk = NRF_CLOCK_TASK_HFCLKSTART,
.started_evt = NRF_CLOCK_EVENT_HFCLKSTARTED,
.stop_tsk = NRF_CLOCK_TASK_HFCLKSTOP,
IF_ENABLED(CONFIG_LOG, (.name = "hfclk",))
},
[CLOCK_CONTROL_NRF_TYPE_LFCLK] = {
.start_tsk = NRF_CLOCK_TASK_LFCLKSTART,
.started_evt = NRF_CLOCK_EVENT_LFCLKSTARTED,
.stop_tsk = NRF_CLOCK_TASK_LFCLKSTOP,
IF_ENABLED(CONFIG_LOG, (.name = "lfclk",))
IF_ENABLED(
CONFIG_CLOCK_CONTROL_NRF_K32SRC_RC_CALIBRATION,
(
.start_handler = z_nrf_clock_calibration_start,
.stop_handler = z_nrf_clock_calibration_stop,
)
)
}
}
};
DEVICE_AND_API_INIT(clock_nrf,
DT_INST_0_NORDIC_NRF_CLOCK_LABEL,
clk_init, &data, &config, PRE_KERNEL_1,
CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&clock_control_api);
static void clkstarted_handle(struct device *dev,
enum clock_control_nrf_type type)
{
struct nrf_clock_control_sub_data *sub_data = get_sub_data(dev, type);
struct clock_control_async_data *async_data;
DBG(dev, type, "Clock started");
sub_data->started = true;
while ((async_data = list_get(&sub_data->list)) != NULL) {
async_data->cb(dev, async_data->user_data);
}
}
#if defined(CONFIG_USB_NRFX)
static bool power_event_check_and_clean(nrf_power_event_t evt, u32_t intmask)
{
bool ret = nrf_power_event_check(NRF_POWER, evt) &&
nrf_power_int_enable_check(NRF_POWER, intmask);
if (ret) {
nrf_power_event_clear(NRF_POWER, evt);
}
return ret;
}
#endif
static void usb_power_isr(void)
{
#if defined(CONFIG_USB_NRFX)
extern void usb_dc_nrfx_power_event_callback(nrf_power_event_t event);
if (power_event_check_and_clean(NRF_POWER_EVENT_USBDETECTED,
NRF_POWER_INT_USBDETECTED_MASK)) {
usb_dc_nrfx_power_event_callback(NRF_POWER_EVENT_USBDETECTED);
}
if (power_event_check_and_clean(NRF_POWER_EVENT_USBPWRRDY,
NRF_POWER_INT_USBPWRRDY_MASK)) {
usb_dc_nrfx_power_event_callback(NRF_POWER_EVENT_USBPWRRDY);
}
if (power_event_check_and_clean(NRF_POWER_EVENT_USBREMOVED,
NRF_POWER_INT_USBREMOVED_MASK)) {
usb_dc_nrfx_power_event_callback(NRF_POWER_EVENT_USBREMOVED);
}
#endif
}
void nrf_power_clock_isr(void *arg)
{
ARG_UNUSED(arg);
struct device *dev = DEVICE_GET(clock_nrf);
if (clock_event_check_and_clean(NRF_CLOCK_EVENT_HFCLKSTARTED,
NRF_CLOCK_INT_HF_STARTED_MASK)) {
struct nrf_clock_control_sub_data *data =
get_sub_data(dev, CLOCK_CONTROL_NRF_TYPE_HFCLK);
/* Check needed due to anomaly 201:
* HFCLKSTARTED may be generated twice.
*/
if (!data->started) {
clkstarted_handle(dev, CLOCK_CONTROL_NRF_TYPE_HFCLK);
}
}
if (clock_event_check_and_clean(NRF_CLOCK_EVENT_LFCLKSTARTED,
NRF_CLOCK_INT_LF_STARTED_MASK)) {
if (IS_ENABLED(
CONFIG_CLOCK_CONTROL_NRF_K32SRC_RC_CALIBRATION)) {
z_nrf_clock_calibration_lfclk_started(dev);
}
clkstarted_handle(dev, CLOCK_CONTROL_NRF_TYPE_LFCLK);
}
usb_power_isr();
if (IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_K32SRC_RC_CALIBRATION)) {
z_nrf_clock_calibration_isr();
}
}
#ifdef CONFIG_USB_NRFX
void nrf5_power_usb_power_int_enable(bool enable)
{
u32_t mask;
mask = NRF_POWER_INT_USBDETECTED_MASK |
NRF_POWER_INT_USBREMOVED_MASK |
NRF_POWER_INT_USBPWRRDY_MASK;
if (enable) {
nrf_power_int_enable(NRF_POWER, mask);
irq_enable(DT_INST_0_NORDIC_NRF_CLOCK_IRQ_0);
} else {
nrf_power_int_disable(NRF_POWER, mask);
}
}
#endif