zephyr/drivers/serial/uart_cc23x0.c
Pieter De Gendt 7cef0e3614 drivers: serial: Wrap driver instances in device API macro
Use the device API macro to place the driver API instance into an iterable
section.

Signed-off-by: Pieter De Gendt <pieter.degendt@basalte.be>
2025-02-12 16:06:25 +01:00

406 lines
13 KiB
C

/*
* Copyright (c) 2024 Texas Instruments Incorporated
* Copyright (c) 2024 BayLibre, SAS
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT ti_cc23x0_uart
#include <zephyr/device.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/irq.h>
#include <errno.h>
#include <driverlib/uart.h>
#include <driverlib/clkctl.h>
struct uart_cc23x0_config {
uint32_t reg;
uint32_t sys_clk_freq;
const struct pinctrl_dev_config *pcfg;
};
struct uart_cc23x0_data {
struct uart_config uart_config;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t callback;
void *user_data;
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
};
static int uart_cc23x0_poll_in(const struct device *dev, unsigned char *c)
{
const struct uart_cc23x0_config *config = dev->config;
if (!UARTCharAvailable(config->reg)) {
return -1;
}
*c = UARTGetCharNonBlocking(config->reg);
return 0;
}
static void uart_cc23x0_poll_out(const struct device *dev, unsigned char c)
{
const struct uart_cc23x0_config *config = dev->config;
UARTPutChar(config->reg, c);
}
static int uart_cc23x0_err_check(const struct device *dev)
{
const struct uart_cc23x0_config *config = dev->config;
uint32_t flags = UARTGetRxError(config->reg);
int error = 0;
error |= (flags & UART_RXERROR_FRAMING) ? UART_ERROR_FRAMING : 0;
error |= (flags & UART_RXERROR_PARITY) ? UART_ERROR_PARITY : 0;
error |= (flags & UART_RXERROR_BREAK) ? UART_BREAK : 0;
error |= (flags & UART_RXERROR_OVERRUN) ? UART_ERROR_OVERRUN : 0;
UARTClearRxError(config->reg);
return error;
}
static int uart_cc23x0_configure(const struct device *dev, const struct uart_config *cfg)
{
const struct uart_cc23x0_config *config = dev->config;
struct uart_cc23x0_data *data = dev->data;
uint32_t line_ctrl = 0;
bool flow_ctrl;
switch (cfg->parity) {
case UART_CFG_PARITY_NONE:
line_ctrl |= UART_CONFIG_PAR_NONE;
break;
case UART_CFG_PARITY_ODD:
line_ctrl |= UART_CONFIG_PAR_ODD;
break;
case UART_CFG_PARITY_EVEN:
line_ctrl |= UART_CONFIG_PAR_EVEN;
break;
case UART_CFG_PARITY_MARK:
line_ctrl |= UART_CONFIG_PAR_ONE;
break;
case UART_CFG_PARITY_SPACE:
line_ctrl |= UART_CONFIG_PAR_ZERO;
break;
default:
return -EINVAL;
}
switch (cfg->stop_bits) {
case UART_CFG_STOP_BITS_1:
line_ctrl |= UART_CONFIG_STOP_ONE;
break;
case UART_CFG_STOP_BITS_2:
line_ctrl |= UART_CONFIG_STOP_TWO;
break;
case UART_CFG_STOP_BITS_0_5:
case UART_CFG_STOP_BITS_1_5:
return -ENOTSUP;
default:
return -EINVAL;
}
switch (cfg->data_bits) {
case UART_CFG_DATA_BITS_5:
line_ctrl |= UART_CONFIG_WLEN_5;
break;
case UART_CFG_DATA_BITS_6:
line_ctrl |= UART_CONFIG_WLEN_6;
break;
case UART_CFG_DATA_BITS_7:
line_ctrl |= UART_CONFIG_WLEN_7;
break;
case UART_CFG_DATA_BITS_8:
line_ctrl |= UART_CONFIG_WLEN_8;
break;
default:
return -EINVAL;
}
switch (cfg->flow_ctrl) {
case UART_CFG_FLOW_CTRL_NONE:
flow_ctrl = false;
break;
case UART_CFG_FLOW_CTRL_RTS_CTS:
flow_ctrl = true;
break;
case UART_CFG_FLOW_CTRL_DTR_DSR:
return -ENOTSUP;
default:
return -EINVAL;
}
/* Disables UART before setting control registers */
UARTConfigSetExpClk(config->reg, config->sys_clk_freq, cfg->baudrate, line_ctrl);
if (flow_ctrl) {
UARTEnableCTS(config->reg);
UARTEnableRTS(config->reg);
} else {
UARTDisableCTS(config->reg);
UARTDisableRTS(config->reg);
}
/* Re-enable UART */
UARTEnable(config->reg);
/* Make use of the FIFO to reduce chances of data being lost */
UARTEnableFifo(config->reg);
data->uart_config = *cfg;
return 0;
}
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
static int uart_cc23x0_config_get(const struct device *dev, struct uart_config *cfg)
{
const struct uart_cc23x0_data *data = dev->data;
*cfg = data->uart_config;
return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static int uart_cc23x0_fifo_fill(const struct device *dev, const uint8_t *buf, int len)
{
const struct uart_cc23x0_config *config = dev->config;
int n = 0;
while (n < len) {
if (!UARTSpaceAvailable(config->reg)) {
break;
}
UARTPutCharNonBlocking(config->reg, buf[n]);
n++;
}
return n;
}
static int uart_cc23x0_fifo_read(const struct device *dev, uint8_t *buf, const int len)
{
const struct uart_cc23x0_config *config = dev->config;
int c, n;
n = 0;
while (n < len) {
if (!UARTCharAvailable(config->reg)) {
break;
}
c = UARTGetCharNonBlocking(config->reg);
buf[n++] = c;
}
return n;
}
static void uart_cc23x0_irq_tx_enable(const struct device *dev)
{
const struct uart_cc23x0_config *config = dev->config;
UARTEnableInt(config->reg, UART_INT_TX);
}
static void uart_cc23x0_irq_tx_disable(const struct device *dev)
{
const struct uart_cc23x0_config *config = dev->config;
UARTDisableInt(config->reg, UART_INT_TX);
}
static int uart_cc23x0_irq_tx_ready(const struct device *dev)
{
const struct uart_cc23x0_config *config = dev->config;
return UARTSpaceAvailable(config->reg) ? 1 : 0;
}
static void uart_cc23x0_irq_rx_enable(const struct device *dev)
{
const struct uart_cc23x0_config *config = dev->config;
/* Trigger the ISR on both RX and Receive Timeout. This is to allow
* the use of the hardware FIFOs for more efficient operation
*/
UARTEnableInt(config->reg, UART_INT_RX | UART_INT_RT);
}
static void uart_cc23x0_irq_rx_disable(const struct device *dev)
{
const struct uart_cc23x0_config *config = dev->config;
UARTDisableInt(config->reg, UART_INT_RX | UART_INT_RT);
}
static int uart_cc23x0_irq_tx_complete(const struct device *dev)
{
const struct uart_cc23x0_config *config = dev->config;
return UARTBusy(config->reg) ? 0 : 1;
}
static int uart_cc23x0_irq_rx_ready(const struct device *dev)
{
const struct uart_cc23x0_config *config = dev->config;
return UARTCharAvailable(config->reg) ? 1 : 0;
}
static void uart_cc23x0_irq_err_enable(const struct device *dev)
{
const struct uart_cc23x0_config *config = dev->config;
return UARTEnableInt(config->reg, UART_INT_OE | UART_INT_BE | UART_INT_PE | UART_INT_FE);
}
static void uart_cc23x0_irq_err_disable(const struct device *dev)
{
const struct uart_cc23x0_config *config = dev->config;
return UARTDisableInt(config->reg, UART_INT_OE | UART_INT_BE | UART_INT_PE | UART_INT_FE);
}
static int uart_cc23x0_irq_is_pending(const struct device *dev)
{
const struct uart_cc23x0_config *config = dev->config;
/* Read masked interrupt status */
uint32_t status = UARTIntStatus(config->reg, true);
return status ? 1 : 0;
}
static int uart_cc23x0_irq_update(const struct device *dev)
{
ARG_UNUSED(dev);
return 1;
}
static void uart_cc23x0_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t cb,
void *user_data)
{
struct uart_cc23x0_data *data = dev->data;
data->callback = cb;
data->user_data = user_data;
}
static void uart_cc23x0_isr(const struct device *dev)
{
struct uart_cc23x0_data *data = dev->data;
if (data->callback) {
data->callback(dev, data->user_data);
}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static DEVICE_API(uart, uart_cc23x0_driver_api) = {
.poll_in = uart_cc23x0_poll_in,
.poll_out = uart_cc23x0_poll_out,
.err_check = uart_cc23x0_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
.configure = uart_cc23x0_configure,
.config_get = uart_cc23x0_config_get,
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = uart_cc23x0_fifo_fill,
.fifo_read = uart_cc23x0_fifo_read,
.irq_tx_enable = uart_cc23x0_irq_tx_enable,
.irq_tx_disable = uart_cc23x0_irq_tx_disable,
.irq_tx_ready = uart_cc23x0_irq_tx_ready,
.irq_rx_enable = uart_cc23x0_irq_rx_enable,
.irq_rx_disable = uart_cc23x0_irq_rx_disable,
.irq_tx_complete = uart_cc23x0_irq_tx_complete,
.irq_rx_ready = uart_cc23x0_irq_rx_ready,
.irq_err_enable = uart_cc23x0_irq_err_enable,
.irq_err_disable = uart_cc23x0_irq_err_disable,
.irq_is_pending = uart_cc23x0_irq_is_pending,
.irq_update = uart_cc23x0_irq_update,
.irq_callback_set = uart_cc23x0_irq_callback_set,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
};
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#define UART_CC23X0_IRQ_CFG(n) \
do { \
UARTClearInt(config->reg, UART_INT_RX); \
UARTClearInt(config->reg, UART_INT_RT); \
\
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), uart_cc23x0_isr, \
DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQN(n)); \
} while (false)
#define UART_CC23X0_INT_FIELDS .callback = NULL, .user_data = NULL,
#else
#define UART_CC23X0_IRQ_CFG(n)
#define UART_CC23X0_INT_FIELDS
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#define UART_CC23X0_DEVICE_DEFINE(n) \
\
DEVICE_DT_INST_DEFINE(n, uart_cc23x0_init_##n, NULL, &uart_cc23x0_data_##n, \
&uart_cc23x0_config_##n, PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY, \
&uart_cc23x0_driver_api)
#define UART_CC23X0_INIT_FUNC(n) \
static int uart_cc23x0_init_##n(const struct device *dev) \
{ \
const struct uart_cc23x0_config *config = dev->config; \
struct uart_cc23x0_data *data = dev->data; \
int ret; \
\
CLKCTLEnable(CLKCTL_BASE, CLKCTL_UART0); \
\
ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); \
if (ret < 0) { \
return ret; \
} \
\
/* Configure and enable UART */ \
ret = uart_cc23x0_configure(dev, &data->uart_config); \
\
/* Enable interrupts */ \
UART_CC23X0_IRQ_CFG(n); \
\
return ret; \
}
#define UART_CC23X0_INIT(n) \
PINCTRL_DT_INST_DEFINE(n); \
UART_CC23X0_INIT_FUNC(n); \
\
static struct uart_cc23x0_config uart_cc23x0_config_##n = { \
.reg = DT_INST_REG_ADDR(n), \
.sys_clk_freq = DT_INST_PROP_BY_PHANDLE(n, clocks, clock_frequency), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
}; \
\
static struct uart_cc23x0_data uart_cc23x0_data_##n = { \
.uart_config = \
{ \
.baudrate = DT_INST_PROP(n, current_speed), \
.parity = DT_INST_ENUM_IDX(n, parity), \
.stop_bits = DT_INST_ENUM_IDX(n, stop_bits), \
.data_bits = DT_INST_ENUM_IDX(n, data_bits), \
.flow_ctrl = DT_INST_PROP(n, hw_flow_control), \
}, \
UART_CC23X0_INT_FIELDS \
}; \
UART_CC23X0_DEVICE_DEFINE(n);
DT_INST_FOREACH_STATUS_OKAY(UART_CC23X0_INIT)