zephyr/drivers/timer/xlnx_psttc_timer.c
Stephanos Ioannidis fc941d583e drivers: timer: xlnx_psttc_timer: Implement tickless support
This commit reworks the Xilinx TTC timer driver to use the "match" mode
instead of the "interval" mode which counts up to the specified value
and resets to zero.

Using the "match" mode ensures that the timer keeps counting even after
an interrupt is triggered, and facilitates the tickless mode support
implementation.

This also allows `z_timer_cycle_get_32` to return the correct cycle
count when interrupt is locked; thereby, fixing the k_busy_wait hang
issue.

Note that the TTC "match" mode emulation (and tickless timer operation)
is only stable when the QEMU icount mode is enabled.

Signed-off-by: Stephanos Ioannidis <root@stephanos.io>
2020-03-21 14:20:17 -04:00

196 lines
5.2 KiB
C

/*
* Copyright (c) 2020 Stephanos Ioannidis <root@stephanos.io>
* Copyright (c) 2018 Xilinx, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <soc.h>
#include <drivers/timer/system_timer.h>
#include "xlnx_psttc_timer_priv.h"
#define TIMER_INDEX CONFIG_XLNX_PSTTC_TIMER_INDEX
#define TIMER_DT(v) UTIL_CAT(UTIL_CAT(DT_INST_, TIMER_INDEX), _##v)
#define TIMER_IRQ TIMER_DT(XLNX_TTCPS_IRQ_0)
#define TIMER_BASE_ADDR TIMER_DT(XLNX_TTCPS_BASE_ADDRESS)
#define TIMER_CLOCK_FREQUECY TIMER_DT(XLNX_TTCPS_CLOCK_FREQUENCY)
#define TICKS_PER_SEC CONFIG_SYS_CLOCK_TICKS_PER_SEC
#define CYCLES_PER_SEC TIMER_CLOCK_FREQUECY
#define CYCLES_PER_TICK (CYCLES_PER_SEC / TICKS_PER_SEC)
/*
* CYCLES_NEXT_MIN must be large enough to ensure that the timer does not miss
* interrupts. This value was conservatively set using the trial and error
* method, and there is room for improvement.
*/
#define CYCLES_NEXT_MIN (10000)
#define CYCLES_NEXT_MAX (XTTC_MAX_INTERVAL_COUNT)
BUILD_ASSERT_MSG(TIMER_DT(XLNX_TTCPS_CLOCK_FREQUENCY) ==
CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC,
"Configured system timer frequency does not match the TTC "
"clock frequency in the device tree");
BUILD_ASSERT_MSG(CYCLES_PER_SEC >= TICKS_PER_SEC,
"Timer clock frequency must be greater than the system tick "
"frequency");
BUILD_ASSERT_MSG((CYCLES_PER_SEC % TICKS_PER_SEC) == 0,
"Timer clock frequency is not divisible by the system tick "
"frequency");
#ifdef CONFIG_TICKLESS_KERNEL
static u32_t last_cycles;
#endif
static u32_t read_count(void)
{
/* Read current counter value */
return sys_read32(TIMER_BASE_ADDR + XTTCPS_COUNT_VALUE_OFFSET);
}
static void update_match(u32_t cycles, u32_t match)
{
u32_t delta = match - cycles;
/* Ensure that the match value meets the minimum timing requirements */
if (delta < CYCLES_NEXT_MIN) {
match += CYCLES_NEXT_MIN - delta;
}
/* Write counter match value for interrupt generation */
sys_write32(match, TIMER_BASE_ADDR + XTTCPS_MATCH_0_OFFSET);
}
static void ttc_isr(void *arg)
{
u32_t cycles;
u32_t ticks;
ARG_UNUSED(arg);
/* Acknowledge interrupt */
sys_read32(TIMER_BASE_ADDR + XTTCPS_ISR_OFFSET);
/* Read counter value */
cycles = read_count();
#ifdef CONFIG_TICKLESS_KERNEL
/* Calculate the number of ticks since last announcement */
ticks = (cycles - last_cycles) / CYCLES_PER_TICK;
/* Update last cycles count */
last_cycles = cycles;
#else
/* Update counter match value for the next interrupt */
update_match(cycles, cycles + CYCLES_PER_TICK);
/* Advance tick count by 1 */
ticks = 1;
#endif
/* Announce to the kernel*/
z_clock_announce(ticks);
}
int z_clock_driver_init(struct device *device)
{
u32_t reg_val;
/* Stop timer */
sys_write32(XTTCPS_CNT_CNTRL_DIS_MASK,
TIMER_BASE_ADDR + XTTCPS_CNT_CNTRL_OFFSET);
#ifdef CONFIG_TICKLESS_KERNEL
/* Initialise internal states */
last_cycles = 0;
#endif
/* Initialise timer registers */
sys_write32(XTTCPS_CNT_CNTRL_RESET_VALUE,
TIMER_BASE_ADDR + XTTCPS_CNT_CNTRL_OFFSET);
sys_write32(0, TIMER_BASE_ADDR + XTTCPS_CLK_CNTRL_OFFSET);
sys_write32(0, TIMER_BASE_ADDR + XTTCPS_INTERVAL_VAL_OFFSET);
sys_write32(0, TIMER_BASE_ADDR + XTTCPS_MATCH_0_OFFSET);
sys_write32(0, TIMER_BASE_ADDR + XTTCPS_MATCH_1_OFFSET);
sys_write32(0, TIMER_BASE_ADDR + XTTCPS_MATCH_2_OFFSET);
sys_write32(0, TIMER_BASE_ADDR + XTTCPS_IER_OFFSET);
sys_write32(XTTCPS_IXR_ALL_MASK, TIMER_BASE_ADDR + XTTCPS_ISR_OFFSET);
/* Reset counter value */
reg_val = sys_read32(TIMER_BASE_ADDR + XTTCPS_CNT_CNTRL_OFFSET);
reg_val |= XTTCPS_CNT_CNTRL_RST_MASK;
sys_write32(reg_val, TIMER_BASE_ADDR + XTTCPS_CNT_CNTRL_OFFSET);
/* Set match mode */
reg_val = sys_read32(TIMER_BASE_ADDR + XTTCPS_CNT_CNTRL_OFFSET);
reg_val |= XTTCPS_CNT_CNTRL_MATCH_MASK;
sys_write32(reg_val, TIMER_BASE_ADDR + XTTCPS_CNT_CNTRL_OFFSET);
/* Set initial timeout */
reg_val = IS_ENABLED(CONFIG_TICKLESS_KERNEL) ?
CYCLES_NEXT_MAX : CYCLES_PER_TICK;
sys_write32(reg_val, TIMER_BASE_ADDR + XTTCPS_MATCH_0_OFFSET);
/* Connect timer interrupt */
IRQ_CONNECT(TIMER_IRQ, 0, ttc_isr, 0, 0);
irq_enable(TIMER_IRQ);
/* Enable timer interrupt */
reg_val = sys_read32(TIMER_BASE_ADDR + XTTCPS_IER_OFFSET);
reg_val |= XTTCPS_IXR_MATCH_0_MASK;
sys_write32(reg_val, TIMER_BASE_ADDR + XTTCPS_IER_OFFSET);
/* Start timer */
reg_val = sys_read32(TIMER_BASE_ADDR + XTTCPS_CNT_CNTRL_OFFSET);
reg_val &= (~XTTCPS_CNT_CNTRL_DIS_MASK);
sys_write32(reg_val, TIMER_BASE_ADDR + XTTCPS_CNT_CNTRL_OFFSET);
return 0;
}
void z_clock_set_timeout(s32_t ticks, bool idle)
{
#ifdef CONFIG_TICKLESS_KERNEL
u32_t cycles;
u32_t next_cycles;
/* Read counter value */
cycles = read_count();
/* Calculate timeout counter value */
if (ticks == K_FOREVER) {
next_cycles = cycles + CYCLES_NEXT_MAX;
} else {
next_cycles = cycles + ((u32_t)ticks * CYCLES_PER_TICK);
}
/* Set match value for the next interrupt */
update_match(cycles, next_cycles);
#endif
}
u32_t z_clock_elapsed(void)
{
#ifdef CONFIG_TICKLESS_KERNEL
u32_t cycles;
/* Read counter value */
cycles = read_count();
/* Return the number of ticks since last announcement */
return (cycles - last_cycles) / CYCLES_PER_TICK;
#else
/* Always return 0 for tickful operation */
return 0;
#endif
}
u32_t z_timer_cycle_get_32(void)
{
/* Return the current counter value */
return read_count();
}