zephyr/drivers/adc/adc_max32.c
Pieter De Gendt 8442b6a83f drivers: adc: Place API into iterable section
Move all adc driver api structs into an iterable section, this allows us
to verify if an api pointer is located in compatible linker section.

Signed-off-by: Pieter De Gendt <pieter.degendt@basalte.be>
2024-11-29 14:50:40 +01:00

341 lines
9.8 KiB
C

/*
* Copyright (c) 2023-2024 Analog Devices, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT adi_max32_adc
#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/drivers/adc.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/clock_control/adi_max32_clock_control.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(adc_max32, CONFIG_ADC_LOG_LEVEL);
#include <wrap_max32_adc.h>
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
/* reference voltage for the ADC */
#define MAX32_ADC_VREF_MV DT_INST_PROP(0, vref_mv)
struct max32_adc_config {
uint8_t channel_count;
mxc_adc_regs_t *regs;
int clock_divider;
int track_count;
int idle_count;
const struct pinctrl_dev_config *pctrl;
const struct device *clock;
struct max32_perclk perclk;
void (*irq_func)(void);
};
struct max32_adc_data {
const struct device *dev;
struct adc_context ctx;
uint16_t *buffer;
uint16_t *repeat_buffer;
uint32_t channels;
uint32_t sample_channels;
const uint8_t resolution;
};
#ifdef CONFIG_ADC_ASYNC
static void adc_complete_cb(void *req, int error)
{
ARG_UNUSED(req);
ARG_UNUSED(error);
}
#endif /* CONFIG_ADC_ASYNC */
static void adc_max32_start_channel(const struct device *dev)
{
struct max32_adc_data *data = dev->data;
int ret = 0;
#if defined(CONFIG_ADC_ASYNC)
if (data->ctx.asynchronous) {
ret = Wrap_MXC_ADC_StartConversionAsync(&data->sample_channels, adc_complete_cb);
if (ret < 0) {
LOG_ERR("Error starting conversion (%d)", ret);
}
} else {
#endif /* CONFIG_ADC_ASYNC */
while (data->sample_channels) {
ret = Wrap_MXC_ADC_StartConversion(&data->sample_channels);
if (ret < 0) {
LOG_ERR("Error starting conversion (%d)", ret);
return;
}
Wrap_MXC_ADC_GetData(&data->buffer);
}
Wrap_MXC_ADC_DisableConversion();
adc_context_on_sampling_done(&data->ctx, dev);
#if defined(CONFIG_ADC_ASYNC)
}
#endif /* CONFIG_ADC_ASYNC */
}
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct max32_adc_data *data = CONTAINER_OF(ctx, struct max32_adc_data, ctx);
data->sample_channels = ctx->sequence.channels;
data->repeat_buffer = data->buffer;
adc_max32_start_channel(data->dev);
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat_sampling)
{
struct max32_adc_data *data = CONTAINER_OF(ctx, struct max32_adc_data, ctx);
if (repeat_sampling) {
data->buffer = data->repeat_buffer;
}
}
static int start_read(const struct device *dev, const struct adc_sequence *seq)
{
struct max32_adc_data *data = dev->data;
uint32_t num_of_sample_channels = POPCOUNT(seq->channels);
uint32_t num_of_sample = 1;
int ret = 0;
if (seq->resolution != data->resolution) {
LOG_ERR("Unsupported resolution (%d)", seq->resolution);
return -ENOTSUP;
}
if (seq->channels == 0) {
return -EINVAL;
}
if ((data->channels & seq->channels) != seq->channels) {
return -EINVAL;
}
ret = Wrap_MXC_ADC_AverageConfig(seq->oversampling);
if (ret != 0) {
return -EINVAL;
}
if (seq->options) {
num_of_sample += seq->options->extra_samplings;
}
if (seq->buffer_size < (num_of_sample * num_of_sample_channels)) { /* Buffer size control */
return -ENOMEM;
}
data->buffer = seq->buffer;
adc_context_start_read(&data->ctx, seq);
return adc_context_wait_for_completion(&data->ctx);
}
static int adc_max32_read(const struct device *dev, const struct adc_sequence *seq)
{
struct max32_adc_data *data = dev->data;
int ret;
adc_context_lock(&data->ctx, false, NULL);
ret = start_read(dev, seq);
adc_context_release(&data->ctx, ret);
return ret;
}
#ifdef CONFIG_ADC_ASYNC
static int adc_max32_read_async(const struct device *dev, const struct adc_sequence *seq,
struct k_poll_signal *async)
{
struct max32_adc_data *data = dev->data;
int ret;
adc_context_lock(&data->ctx, true, async);
ret = start_read(dev, seq);
adc_context_release(&data->ctx, ret);
return ret;
}
#endif /* CONFIG_ADC_ASYNC */
static int adc_max32_channel_setup(const struct device *dev, const struct adc_channel_cfg *cfg)
{
const struct max32_adc_config *conf = dev->config;
struct max32_adc_data *data = dev->data;
wrap_mxc_adc_scale_t wrap_mxc_scale;
uint8_t adc_reference;
int ret = 0;
if (cfg->channel_id >= conf->channel_count) {
LOG_ERR("Invalid channel (%u)", cfg->channel_id);
return -EINVAL;
}
if (cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
LOG_ERR("Invalid channel acquisition time");
return -EINVAL;
}
if (cfg->differential) {
LOG_ERR("Differential sampling not supported");
return -ENOTSUP;
}
switch (cfg->reference) {
case ADC_REF_INTERNAL:
adc_reference = ADI_MAX32_ADC_REF_INTERNAL;
break;
case ADC_REF_VDD_1_2:
adc_reference = ADI_MAX32_ADC_REF_VDD_1_2;
break;
case ADC_REF_EXTERNAL0:
adc_reference = ADI_MAX32_ADC_REF_EXT0;
break;
default:
return -ENOTSUP;
}
ret = Wrap_MXC_ADC_ReferenceSelect(adc_reference);
if (ret != 0) {
LOG_ERR("Reference is not supported.");
return -ENOTSUP;
}
switch (cfg->gain) {
case ADC_GAIN_1_6:
wrap_mxc_scale = WRAP_MXC_ADC_SCALE_6;
break;
case ADC_GAIN_1_4:
wrap_mxc_scale = WRAP_MXC_ADC_SCALE_4;
break;
case ADC_GAIN_1_3:
wrap_mxc_scale = WRAP_MXC_ADC_SCALE_3;
break;
case ADC_GAIN_1_2:
wrap_mxc_scale = WRAP_MXC_ADC_SCALE_2;
break;
case ADC_GAIN_1:
wrap_mxc_scale = WRAP_MXC_ADC_SCALE_1;
break;
case ADC_GAIN_2:
wrap_mxc_scale = WRAP_MXC_ADC_SCALE_2X;
break;
default:
return -ENOTSUP;
}
ret = Wrap_MXC_ADC_SetExtScale(wrap_mxc_scale);
if (ret != 0) {
LOG_ERR("Gain value is not supported.");
return -ENOTSUP;
}
data->channels |= BIT(cfg->channel_id);
return 0;
}
static int adc_max32_init(const struct device *dev)
{
const struct max32_adc_config *config = dev->config;
struct max32_adc_data *data = dev->data;
uint32_t ret;
wrap_mxc_adc_req_t req = {
.clock = config->perclk.clk_src,
.clkdiv = config->clock_divider,
.cal = 1, /* Initial calibration enabled. */
.ref = 1, /* Reference set to internal reference until user define it. */
.trackCount = config->track_count,
.idleCount = config->idle_count};
/* Enable clock */
ret = clock_control_on(config->clock, (clock_control_subsys_t)&config->perclk);
if (ret) {
return ret;
}
ret = Wrap_MXC_ADC_Init(&req);
if (ret) {
return -EINVAL;
}
ret = pinctrl_apply_state(config->pctrl, PINCTRL_STATE_DEFAULT);
if (ret) {
return ret;
}
config->irq_func();
data->dev = dev;
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
static void adc_max32_isr(const struct device *dev)
{
struct max32_adc_data *const data = dev->data;
uint32_t flags = MXC_ADC_GetFlags();
MXC_ADC_Handler();
MXC_ADC_ClearFlags(flags);
if (flags & WRAP_MXC_F_ADC_CONV_DONE_IF) {
Wrap_MXC_ADC_GetData(&data->buffer);
if (data->sample_channels != 0) {
adc_max32_start_channel(dev);
} else {
Wrap_MXC_ADC_DisableConversion();
adc_context_on_sampling_done(&data->ctx, dev);
}
}
}
static DEVICE_API(adc, adc_max32_driver_api) = {
.channel_setup = adc_max32_channel_setup,
.read = adc_max32_read,
#ifdef CONFIG_ADC_ASYNC
.read_async = adc_max32_read_async,
#endif /* CONFIG_ADC_ASYNC */
.ref_internal = MAX32_ADC_VREF_MV,
};
#define MAX32_ADC_INIT(_num) \
PINCTRL_DT_INST_DEFINE(_num); \
static void max32_adc_irq_init_##_num(void) \
{ \
IRQ_CONNECT(DT_INST_IRQN(_num), DT_INST_IRQ(_num, priority), adc_max32_isr, \
DEVICE_DT_INST_GET(_num), 0); \
irq_enable(DT_INST_IRQN(_num)); \
}; \
static const struct max32_adc_config max32_adc_config_##_num = { \
.channel_count = DT_INST_PROP(_num, channel_count), \
.regs = (mxc_adc_regs_t *)DT_INST_REG_ADDR(_num), \
.pctrl = PINCTRL_DT_INST_DEV_CONFIG_GET(_num), \
.clock = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(_num)), \
.clock_divider = DT_INST_PROP_OR(_num, clock_divider, 1), \
.track_count = DT_INST_PROP_OR(_num, track_count, 0), \
.idle_count = DT_INST_PROP_OR(_num, idle_count, 0), \
.perclk.bus = DT_INST_CLOCKS_CELL(_num, offset), \
.perclk.bit = DT_INST_CLOCKS_CELL(_num, bit), \
.perclk.clk_src = \
DT_INST_PROP_OR(_num, clock_source, ADI_MAX32_PRPH_CLK_SRC_PCLK), \
.irq_func = max32_adc_irq_init_##_num, \
}; \
static struct max32_adc_data max32_adc_data_##_num = { \
ADC_CONTEXT_INIT_TIMER(max32_adc_data_##_num, ctx), \
ADC_CONTEXT_INIT_LOCK(max32_adc_data_##_num, ctx), \
ADC_CONTEXT_INIT_SYNC(max32_adc_data_##_num, ctx), \
.resolution = DT_INST_PROP(_num, resolution), \
}; \
DEVICE_DT_INST_DEFINE(_num, &adc_max32_init, NULL, &max32_adc_data_##_num, \
&max32_adc_config_##_num, POST_KERNEL, CONFIG_ADC_INIT_PRIORITY, \
&adc_max32_driver_api);
DT_INST_FOREACH_STATUS_OKAY(MAX32_ADC_INIT)