zephyr/drivers/adc/adc_mcp320x.c
Pieter De Gendt 8442b6a83f drivers: adc: Place API into iterable section
Move all adc driver api structs into an iterable section, this allows us
to verify if an api pointer is located in compatible linker section.

Signed-off-by: Pieter De Gendt <pieter.degendt@basalte.be>
2024-11-29 14:50:40 +01:00

347 lines
7.7 KiB
C

/*
* Copyright (c) 2020 Vestas Wind Systems A/S
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief ADC driver for the MCP3204/MCP3208 ADCs.
*/
#include <zephyr/drivers/adc.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/kernel.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/sys/util.h>
LOG_MODULE_REGISTER(adc_mcp320x, CONFIG_ADC_LOG_LEVEL);
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
#define MCP320X_RESOLUTION 12U
struct mcp320x_config {
struct spi_dt_spec bus;
uint8_t channels;
};
struct mcp320x_data {
struct adc_context ctx;
const struct device *dev;
uint16_t *buffer;
uint16_t *repeat_buffer;
uint8_t channels;
uint8_t differential;
struct k_thread thread;
struct k_sem sem;
K_KERNEL_STACK_MEMBER(stack,
CONFIG_ADC_MCP320X_ACQUISITION_THREAD_STACK_SIZE);
};
static int mcp320x_channel_setup(const struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
const struct mcp320x_config *config = dev->config;
struct mcp320x_data *data = dev->data;
if (channel_cfg->gain != ADC_GAIN_1) {
LOG_ERR("unsupported channel gain '%d'", channel_cfg->gain);
return -ENOTSUP;
}
if (channel_cfg->reference != ADC_REF_EXTERNAL0) {
LOG_ERR("unsupported channel reference '%d'",
channel_cfg->reference);
return -ENOTSUP;
}
if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
LOG_ERR("unsupported acquisition_time '%d'",
channel_cfg->acquisition_time);
return -ENOTSUP;
}
if (channel_cfg->channel_id >= config->channels) {
LOG_ERR("unsupported channel id '%d'", channel_cfg->channel_id);
return -ENOTSUP;
}
WRITE_BIT(data->differential, channel_cfg->channel_id,
channel_cfg->differential);
return 0;
}
static int mcp320x_validate_buffer_size(const struct device *dev,
const struct adc_sequence *sequence)
{
const struct mcp320x_config *config = dev->config;
uint8_t channels = 0;
size_t needed;
uint32_t mask;
for (mask = BIT(config->channels - 1); mask != 0; mask >>= 1) {
if (mask & sequence->channels) {
channels++;
}
}
needed = channels * sizeof(uint16_t);
if (sequence->options) {
needed *= (1 + sequence->options->extra_samplings);
}
if (sequence->buffer_size < needed) {
return -ENOMEM;
}
return 0;
}
static int mcp320x_start_read(const struct device *dev,
const struct adc_sequence *sequence)
{
const struct mcp320x_config *config = dev->config;
struct mcp320x_data *data = dev->data;
int err;
if (sequence->resolution != MCP320X_RESOLUTION) {
LOG_ERR("unsupported resolution %d", sequence->resolution);
return -ENOTSUP;
}
if (find_msb_set(sequence->channels) > config->channels) {
LOG_ERR("unsupported channels in mask: 0x%08x",
sequence->channels);
return -ENOTSUP;
}
err = mcp320x_validate_buffer_size(dev, sequence);
if (err) {
LOG_ERR("buffer size too small");
return err;
}
data->buffer = sequence->buffer;
adc_context_start_read(&data->ctx, sequence);
return adc_context_wait_for_completion(&data->ctx);
}
static int mcp320x_read_async(const struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
struct mcp320x_data *data = dev->data;
int err;
adc_context_lock(&data->ctx, async ? true : false, async);
err = mcp320x_start_read(dev, sequence);
adc_context_release(&data->ctx, err);
return err;
}
static int mcp320x_read(const struct device *dev,
const struct adc_sequence *sequence)
{
return mcp320x_read_async(dev, sequence, NULL);
}
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct mcp320x_data *data = CONTAINER_OF(ctx, struct mcp320x_data, ctx);
data->channels = ctx->sequence.channels;
data->repeat_buffer = data->buffer;
k_sem_give(&data->sem);
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
bool repeat_sampling)
{
struct mcp320x_data *data = CONTAINER_OF(ctx, struct mcp320x_data, ctx);
if (repeat_sampling) {
data->buffer = data->repeat_buffer;
}
}
static int mcp320x_read_channel(const struct device *dev, uint8_t channel,
uint16_t *result)
{
const struct mcp320x_config *config = dev->config;
struct mcp320x_data *data = dev->data;
uint8_t tx_bytes[2];
uint8_t rx_bytes[2];
int err;
const struct spi_buf tx_buf[2] = {
{
.buf = tx_bytes,
.len = sizeof(tx_bytes)
},
{
.buf = NULL,
.len = 1
}
};
const struct spi_buf rx_buf[2] = {
{
.buf = NULL,
.len = 1
},
{
.buf = rx_bytes,
.len = sizeof(rx_bytes)
}
};
const struct spi_buf_set tx = {
.buffers = tx_buf,
.count = ARRAY_SIZE(tx_buf)
};
const struct spi_buf_set rx = {
.buffers = rx_buf,
.count = ARRAY_SIZE(rx_buf)
};
/*
* Configuration bits consists of: 5 dummy bits + start bit +
* SGL/#DIFF bit + D2 + D1 + D0 + 6 dummy bits
*/
tx_bytes[0] = BIT(2) | channel >> 2;
tx_bytes[1] = channel << 6;
if ((data->differential & BIT(channel)) == 0) {
tx_bytes[0] |= BIT(1);
}
err = spi_transceive_dt(&config->bus, &tx, &rx);
if (err) {
return err;
}
*result = sys_get_be16(rx_bytes);
*result &= BIT_MASK(MCP320X_RESOLUTION);
return 0;
}
static void mcp320x_acquisition_thread(void *p1, void *p2, void *p3)
{
ARG_UNUSED(p2);
ARG_UNUSED(p3);
struct mcp320x_data *data = p1;
uint16_t result = 0;
uint8_t channel;
int err;
while (true) {
k_sem_take(&data->sem, K_FOREVER);
while (data->channels) {
channel = find_lsb_set(data->channels) - 1;
LOG_DBG("reading channel %d", channel);
err = mcp320x_read_channel(data->dev, channel, &result);
if (err) {
LOG_ERR("failed to read channel %d (err %d)",
channel, err);
adc_context_complete(&data->ctx, err);
break;
}
LOG_DBG("read channel %d, result = %d", channel,
result);
*data->buffer++ = result;
WRITE_BIT(data->channels, channel, 0);
}
adc_context_on_sampling_done(&data->ctx, data->dev);
}
}
static int mcp320x_init(const struct device *dev)
{
const struct mcp320x_config *config = dev->config;
struct mcp320x_data *data = dev->data;
data->dev = dev;
k_sem_init(&data->sem, 0, 1);
if (!spi_is_ready_dt(&config->bus)) {
LOG_ERR("SPI bus is not ready");
return -ENODEV;
}
k_tid_t tid = k_thread_create(&data->thread, data->stack,
K_KERNEL_STACK_SIZEOF(data->stack),
mcp320x_acquisition_thread,
data, NULL, NULL,
CONFIG_ADC_MCP320X_ACQUISITION_THREAD_PRIO,
0, K_NO_WAIT);
k_thread_name_set(tid, dev->name);
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
static DEVICE_API(adc, mcp320x_adc_api) = {
.channel_setup = mcp320x_channel_setup,
.read = mcp320x_read,
#ifdef CONFIG_ADC_ASYNC
.read_async = mcp320x_read_async,
#endif
};
#define INST_DT_MCP320X(inst, t) DT_INST(inst, microchip_mcp##t)
#define MCP320X_DEVICE(t, n, ch) \
static struct mcp320x_data mcp##t##_data_##n = { \
ADC_CONTEXT_INIT_TIMER(mcp##t##_data_##n, ctx), \
ADC_CONTEXT_INIT_LOCK(mcp##t##_data_##n, ctx), \
ADC_CONTEXT_INIT_SYNC(mcp##t##_data_##n, ctx), \
}; \
static const struct mcp320x_config mcp##t##_config_##n = { \
.bus = SPI_DT_SPEC_GET(INST_DT_MCP320X(n, t), \
SPI_OP_MODE_MASTER | SPI_TRANSFER_MSB | \
SPI_WORD_SET(8), 0), \
.channels = ch, \
}; \
DEVICE_DT_DEFINE(INST_DT_MCP320X(n, t), \
&mcp320x_init, NULL, \
&mcp##t##_data_##n, \
&mcp##t##_config_##n, POST_KERNEL, \
CONFIG_ADC_INIT_PRIORITY, \
&mcp320x_adc_api)
/*
* MCP3204: 4 channels
*/
#define MCP3204_DEVICE(n) MCP320X_DEVICE(3204, n, 4)
/*
* MCP3208: 8 channels
*/
#define MCP3208_DEVICE(n) MCP320X_DEVICE(3208, n, 8)
#define CALL_WITH_ARG(arg, expr) expr(arg)
#define INST_DT_MCP320X_FOREACH(t, inst_expr) \
LISTIFY(DT_NUM_INST_STATUS_OKAY(microchip_mcp##t), \
CALL_WITH_ARG, (;), inst_expr)
INST_DT_MCP320X_FOREACH(3204, MCP3204_DEVICE);
INST_DT_MCP320X_FOREACH(3208, MCP3208_DEVICE);