zephyr/drivers/serial/uart_k20.c
Daniel Leung 2a29e22c2f serial/k20: remove base addr, irq and clk freq from kconfig
The UART port base address, IRQ line and clock frequency are static
per SoC, so there is no need to make them configurable in Kconfig.

Change-Id: I79b142414143bc5ef585d3136a00375233de1723
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
2016-03-26 20:36:32 -04:00

592 lines
13 KiB
C

/*
* Copyright (c) 2013-2015 Wind River Systems, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @brief UART driver for the Freescale K20 Family of microprocessors.
*
* Before individual UART port can be used, uart_k20_port_init() has to be
* called to setup the port.
*/
#include <nanokernel.h>
#include <arch/cpu.h>
#include <stdint.h>
#include <board.h>
#include <init.h>
#include <uart.h>
#include <toolchain.h>
#include <sections.h>
#include "uart_k20.h"
#include "uart_k20_priv.h"
/* convenience defines */
#define DEV_CFG(dev) \
((struct uart_device_config * const)(dev)->config->config_info)
#define DEV_DATA(dev) \
((struct uart_k20_dev_data_t * const)(dev)->driver_data)
#define UART_STRUCT(dev) \
((volatile struct K20_UART *)(DEV_CFG(dev))->base)
/* Device data structure */
struct uart_k20_dev_data_t {
uint32_t baud_rate; /* Baud rate */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_t cb; /**< Callback function pointer */
#endif
};
static struct uart_driver_api uart_k20_driver_api;
/**
* @brief Initialize UART channel
*
* This routine is called to reset the chip in a quiescent state.
* It is assumed that this function is called only once per UART.
*
* @param dev UART device struct
*
* @return 0
*/
static int uart_k20_init(struct device *dev)
{
int old_level; /* old interrupt lock level */
union C1 c1; /* UART C1 register value */
union C2 c2; /* UART C2 register value */
volatile struct K20_UART *uart = UART_STRUCT(dev);
struct uart_device_config * const dev_cfg = DEV_CFG(dev);
struct uart_k20_dev_data_t * const dev_data = DEV_DATA(dev);
/* disable interrupts */
old_level = irq_lock();
_uart_k20_baud_rate_set(uart, dev_cfg->sys_clk_freq,
dev_data->baud_rate);
/* 1 start bit, 8 data bits, no parity, 1 stop bit */
c1.value = 0;
uart->c1 = c1;
/* enable Rx and Tx with interrupts disabled */
c2.value = 0;
c2.field.rx_enable = 1;
c2.field.tx_enable = 1;
uart->c2 = c2;
/* restore interrupt state */
irq_unlock(old_level);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
dev_cfg->irq_config_func(dev);
#endif
dev->driver_api = &uart_k20_driver_api;
return 0;
}
/**
* @brief Poll the device for input.
*
* @param dev UART device struct
* @param c Pointer to character
*
* @return 0 if a character arrived, -1 if the input buffer if empty.
*/
static int uart_k20_poll_in(struct device *dev, unsigned char *c)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
if (uart->s1.field.rx_data_full == 0)
return (-1);
/* got a character */
*c = uart->d;
return 0;
}
/**
* @brief Output a character in polled mode.
*
* Checks if the transmitter is empty. If empty, a character is written to
* the data register.
*
* If the hardware flow control is enabled then the handshake signal CTS has to
* be asserted in order to send a character.
*
* @param dev UART device struct
* @param c Character to send
*
* @return sent character
*/
static unsigned char uart_k20_poll_out(struct device *dev,
unsigned char c)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
/* wait for transmitter to ready to accept a character */
while (uart->s1.field.tx_data_empty == 0)
;
uart->d = c;
return c;
}
#if CONFIG_UART_INTERRUPT_DRIVEN
/**
* @brief Fill FIFO with data
*
* @param dev UART device struct
* @param tx_data Data to transmit
* @param len Number of bytes to send
*
* @return number of bytes sent
*/
static int uart_k20_fifo_fill(struct device *dev, const uint8_t *tx_data,
int len)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
uint8_t num_tx = 0;
while ((len - num_tx > 0) && (uart->s1.field.tx_data_empty == 1)) {
uart->d = tx_data[num_tx++];
}
return num_tx;
}
/**
* @brief Read data from FIFO
*
* @param dev UART device struct
* @param rx_data Pointer to data container
* @param size Container size in bytes
*
* @return number of bytes read
*/
static int uart_k20_fifo_read(struct device *dev, uint8_t *rx_data,
const int size)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
uint8_t num_rx = 0;
while ((size - num_rx > 0) && (uart->s1.field.rx_data_full != 0)) {
rx_data[num_rx++] = uart->d;
}
return num_rx;
}
/**
* @brief Enable TX interrupt
*
* @param dev UART device struct
*
* @return N/A
*/
static void uart_k20_irq_tx_enable(struct device *dev)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
uart->c2.field.tx_int_dma_tx_en = 1;
}
/**
* @brief Disable TX interrupt in IER
*
* @param dev UART device struct
*
* @return N/A
*/
static void uart_k20_irq_tx_disable(struct device *dev)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
uart->c2.field.tx_int_dma_tx_en = 0;
}
/**
* @brief Check if Tx IRQ has been raised
*
* @param dev UART device struct
*
* @return 1 if an IRQ is ready, 0 otherwise
*/
static int uart_k20_irq_tx_ready(struct device *dev)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
return (uart->c2.field.tx_int_dma_tx_en == 0) ?
0 : uart->s1.field.tx_data_empty;
}
/**
* @brief Enable RX interrupt in IER
*
* @param dev UART device struct
*
* @return N/A
*/
static void uart_k20_irq_rx_enable(struct device *dev)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
uart->c2.field.rx_full_int_dma_tx_en = 1;
}
/**
* @brief Disable RX interrupt in IER
*
* @param dev UART device struct
*
* @return N/A
*/
static void uart_k20_irq_rx_disable(struct device *dev)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
uart->c2.field.rx_full_int_dma_tx_en = 0;
}
/**
* @brief Check if Rx IRQ has been raised
*
* @param dev UART device struct
*
* @return 1 if an IRQ is ready, 0 otherwise
*/
static int uart_k20_irq_rx_ready(struct device *dev)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
return (uart->c2.field.rx_full_int_dma_tx_en == 0) ?
0 : uart->s1.field.rx_data_full;
}
/**
* @brief Enable error interrupt
*
* @param dev UART device struct
*
* @return N/A
*/
static void uart_k20_irq_err_enable(struct device *dev)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
union C3 c3 = uart->c3;
c3.field.parity_err_int_en = 1;
c3.field.frame_err_int_en = 1;
c3.field.noise_err_int_en = 1;
c3.field.overrun_err_int_en = 1;
uart->c3 = c3;
}
/**
* @brief Disable error interrupt
*
* @param dev UART device struct
*
* @return N/A
*/
static void uart_k20_irq_err_disable(struct device *dev)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
union C3 c3 = uart->c3;
c3.field.parity_err_int_en = 0;
c3.field.frame_err_int_en = 0;
c3.field.noise_err_int_en = 0;
c3.field.overrun_err_int_en = 0;
uart->c3 = c3;
}
/**
* @brief Check if Tx or Rx IRQ is pending
*
* @param dev UART device struct
*
* @return 1 if a Tx or Rx IRQ is pending, 0 otherwise
*/
static int uart_k20_irq_is_pending(struct device *dev)
{
return uart_k20_irq_tx_ready(dev) || uart_k20_irq_rx_ready(dev);
}
/**
* @brief Update IRQ status
*
* @param dev UART device struct
*
* @return always 1
*/
static int uart_k20_irq_update(struct device *dev)
{
return 1;
}
/**
* @brief Set the callback function pointer for IRQ.
*
* @param dev UART device struct
* @param cb Callback function pointer.
*
* @return N/A
*/
static void uart_k20_irq_callback_set(struct device *dev,
uart_irq_callback_t cb)
{
struct uart_k20_dev_data_t * const dev_data = DEV_DATA(dev);
dev_data->cb = cb;
}
/**
* @brief Interrupt service routine.
*
* This simply calls the callback function, if one exists.
*
* @param arg Argument to ISR.
*
* @return N/A
*/
void uart_k20_isr(void *arg)
{
struct device *dev = arg;
struct uart_k20_dev_data_t * const dev_data = DEV_DATA(dev);
if (dev_data->cb) {
dev_data->cb(dev);
}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static struct uart_driver_api uart_k20_driver_api = {
.poll_in = uart_k20_poll_in,
.poll_out = uart_k20_poll_out,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = uart_k20_fifo_fill,
.fifo_read = uart_k20_fifo_read,
.irq_tx_enable = uart_k20_irq_tx_enable,
.irq_tx_disable = uart_k20_irq_tx_disable,
.irq_tx_ready = uart_k20_irq_tx_ready,
.irq_rx_enable = uart_k20_irq_rx_enable,
.irq_rx_disable = uart_k20_irq_rx_disable,
.irq_rx_ready = uart_k20_irq_rx_ready,
.irq_err_enable = uart_k20_irq_err_enable,
.irq_err_disable = uart_k20_irq_err_disable,
.irq_is_pending = uart_k20_irq_is_pending,
.irq_update = uart_k20_irq_update,
.irq_callback_set = uart_k20_irq_callback_set,
#endif
};
#ifdef CONFIG_UART_K20_PORT_0
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void irq_config_func_0(struct device *port);
#endif
static struct uart_device_config uart_k20_dev_cfg_0 = {
.base = (uint8_t *)UART_K20_PORT_0_BASE_ADDR,
.sys_clk_freq = UART_K20_CLK_FREQ,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.irq_config_func = irq_config_func_0,
#endif
};
static struct uart_k20_dev_data_t uart_k20_dev_data_0 = {
.baud_rate = CONFIG_UART_K20_PORT_0_BAUD_RATE,
};
DEVICE_INIT(uart_k20_0, CONFIG_UART_K20_PORT_0_NAME, &uart_k20_init,
&uart_k20_dev_data_0, &uart_k20_dev_cfg_0,
PRIMARY, CONFIG_KERNEL_INIT_PRIORITY_DEVICE);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void irq_config_func_0(struct device *dev)
{
IRQ_CONNECT(UART_K20_PORT_0_IRQ,
CONFIG_UART_K20_PORT_0_IRQ_PRI,
uart_k20_isr, DEVICE_GET(uart_k20_0),
UART_IRQ_FLAGS);
irq_enable(UART_K20_PORT_0_IRQ);
}
#endif
#endif /* CONFIG_UART_K20_PORT_0 */
#ifdef CONFIG_UART_K20_PORT_1
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void irq_config_func_1(struct device *port);
#endif
static struct uart_device_config uart_k20_dev_cfg_1 = {
.base = (uint8_t *)UART_K20_PORT_1_BASE_ADDR,
.sys_clk_freq = UART_K20_CLK_FREQ,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.irq_config_func = irq_config_func_1,
#endif
};
static struct uart_k20_dev_data_t uart_k20_dev_data_1 = {
.baud_rate = CONFIG_UART_K20_PORT_1_BAUD_RATE,
};
DEVICE_INIT(uart_k20_1, CONFIG_UART_K20_PORT_1_NAME, &uart_k20_init,
&uart_k20_dev_data_1, &uart_k20_dev_cfg_1,
PRIMARY, CONFIG_KERNEL_INIT_PRIORITY_DEVICE);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void irq_config_func_1(struct device *dev)
{
IRQ_CONNECT(UART_K20_PORT_1_IRQ,
CONFIG_UART_K20_PORT_1_IRQ_PRI,
uart_k20_isr, DEVICE_GET(uart_k20_1),
UART_IRQ_FLAGS);
irq_enable(UART_K20_PORT_1_IRQ);
}
#endif
#endif /* CONFIG_UART_K20_PORT_1 */
#ifdef CONFIG_UART_K20_PORT_2
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void irq_config_func_2(struct device *port);
#endif
static struct uart_device_config uart_k20_dev_cfg_2 = {
.base = (uint8_t *)UART_K20_PORT_2_BASE_ADDR,
.sys_clk_freq = UART_K20_CLK_FREQ,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.irq_config_func = irq_config_func_2,
#endif
};
static struct uart_k20_dev_data_t uart_k20_dev_data_2 = {
.baud_rate = CONFIG_UART_K20_PORT_2_BAUD_RATE,
};
DEVICE_INIT(uart_k20_2, CONFIG_UART_K20_PORT_2_NAME, &uart_k20_init,
&uart_k20_dev_data_2, &uart_k20_dev_cfg_2,
PRIMARY, CONFIG_KERNEL_INIT_PRIORITY_DEVICE);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void irq_config_func_2(struct device *dev)
{
IRQ_CONNECT(UART_K20_PORT_2_IRQ,
CONFIG_UART_K20_PORT_2_IRQ_PRI,
uart_k20_isr, DEVICE_GET(uart_k20_2),
UART_IRQ_FLAGS);
irq_enable(UART_K20_PORT_2_IRQ);
}
#endif
#endif /* CONFIG_UART_K20_PORT_2 */
#ifdef CONFIG_UART_K20_PORT_3
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void irq_config_func_3(struct device *port);
#endif
static struct uart_device_config uart_k20_dev_cfg_3 = {
.base = (uint8_t *)UART_K20_PORT_3_BASE_ADDR,
.sys_clk_freq = UART_K20_CLK_FREQ,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.irq_config_func = irq_config_func_3,
#endif
};
static struct uart_k20_dev_data_t uart_k20_dev_data_3 = {
.baud_rate = CONFIG_UART_K20_PORT_3_BAUD_RATE,
};
DEVICE_INIT(uart_k20_3, CONFIG_UART_K20_PORT_3_NAME, &uart_k20_init,
&uart_k20_dev_data_3, &uart_k20_dev_cfg_3,
PRIMARY, CONFIG_KERNEL_INIT_PRIORITY_DEVICE);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void irq_config_func_3(struct device *dev)
{
IRQ_CONNECT(UART_K20_PORT_3_IRQ,
CONFIG_UART_K20_PORT_3_IRQ_PRI,
uart_k20_isr, DEVICE_GET(uart_k20_3),
UART_IRQ_FLAGS);
irq_enable(UART_K20_PORT_3_IRQ);
}
#endif
#endif /* CONFIG_UART_K20_PORT_3 */
#ifdef CONFIG_UART_K20_PORT_4
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void irq_config_func_4(struct device *port);
#endif
static struct uart_device_config uart_k20_dev_cfg_4 = {
.base = (uint8_t *)UART_K20_PORT_4_BASE_ADDR,
.sys_clk_freq = UART_K20_CLK_FREQ,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.irq_config_func = irq_config_func_4,
#endif
};
static struct uart_k20_dev_data_t uart_k20_dev_data_4 = {
.baud_rate = CONFIG_UART_K20_PORT_4_BAUD_RATE,
};
DEVICE_INIT(uart_k20_4, CONFIG_UART_K20_PORT_4_NAME, &uart_k20_init,
&uart_k20_dev_data_4, &uart_k20_dev_cfg_4,
PRIMARY, CONFIG_KERNEL_INIT_PRIORITY_DEVICE);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void irq_config_func_4(struct device *dev)
{
IRQ_CONNECT(UART_K20_PORT_4_IRQ,
CONFIG_UART_K20_PORT_4_IRQ_PRI,
uart_k20_isr, DEVICE_GET(uart_k20_4),
UART_IRQ_FLAGS);
irq_enable(UART_K20_PORT_4_IRQ);
}
#endif
#endif /* CONFIG_UART_K20_PORT_4 */