zephyr/arch/riscv/core/isr.S
Stephanos Ioannidis 2d7460482d headers: Refactor kernel and arch headers.
This commit refactors kernel and arch headers to establish a boundary
between private and public interface headers.

The refactoring strategy used in this commit is detailed in the issue

This commit introduces the following major changes:

1. Establish a clear boundary between private and public headers by
  removing "kernel/include" and "arch/*/include" from the global
  include paths. Ideally, only kernel/ and arch/*/ source files should
  reference the headers in these directories. If these headers must be
  used by a component, these include paths shall be manually added to
  the CMakeLists.txt file of the component. This is intended to
  discourage applications from including private kernel and arch
  headers either knowingly and unknowingly.

  - kernel/include/ (PRIVATE)
    This directory contains the private headers that provide private
   kernel definitions which should not be visible outside the kernel
   and arch source code. All public kernel definitions must be added
   to an appropriate header located under include/.

  - arch/*/include/ (PRIVATE)
    This directory contains the private headers that provide private
   architecture-specific definitions which should not be visible
   outside the arch and kernel source code. All public architecture-
   specific definitions must be added to an appropriate header located
   under include/arch/*/.

  - include/ AND include/sys/ (PUBLIC)
    This directory contains the public headers that provide public
   kernel definitions which can be referenced by both kernel and
   application code.

  - include/arch/*/ (PUBLIC)
    This directory contains the public headers that provide public
   architecture-specific definitions which can be referenced by both
   kernel and application code.

2. Split arch_interface.h into "kernel-to-arch interface" and "public
  arch interface" divisions.

  - kernel/include/kernel_arch_interface.h
    * provides private "kernel-to-arch interface" definition.
    * includes arch/*/include/kernel_arch_func.h to ensure that the
     interface function implementations are always available.
    * includes sys/arch_interface.h so that public arch interface
     definitions are automatically included when including this file.

  - arch/*/include/kernel_arch_func.h
    * provides architecture-specific "kernel-to-arch interface"
     implementation.
    * only the functions that will be used in kernel and arch source
     files are defined here.

  - include/sys/arch_interface.h
    * provides "public arch interface" definition.
    * includes include/arch/arch_inlines.h to ensure that the
     architecture-specific public inline interface function
     implementations are always available.

  - include/arch/arch_inlines.h
    * includes architecture-specific arch_inlines.h in
     include/arch/*/arch_inline.h.

  - include/arch/*/arch_inline.h
    * provides architecture-specific "public arch interface" inline
     function implementation.
    * supersedes include/sys/arch_inline.h.

3. Refactor kernel and the existing architecture implementations.

  - Remove circular dependency of kernel and arch headers. The
   following general rules should be observed:

    * Never include any private headers from public headers
    * Never include kernel_internal.h in kernel_arch_data.h
    * Always include kernel_arch_data.h from kernel_arch_func.h
    * Never include kernel.h from kernel_struct.h either directly or
     indirectly. Only add the kernel structures that must be referenced
     from public arch headers in this file.

  - Relocate syscall_handler.h to include/ so it can be used in the
   public code. This is necessary because many user-mode public codes
   reference the functions defined in this header.

  - Relocate kernel_arch_thread.h to include/arch/*/thread.h. This is
   necessary to provide architecture-specific thread definition for
   'struct k_thread' in kernel.h.

  - Remove any private header dependencies from public headers using
   the following methods:

    * If dependency is not required, simply omit
    * If dependency is required,
      - Relocate a portion of the required dependencies from the
       private header to an appropriate public header OR
      - Relocate the required private header to make it public.

This commit supersedes #20047, addresses #19666, and fixes #3056.

Signed-off-by: Stephanos Ioannidis <root@stephanos.io>
2019-11-06 16:07:32 -08:00

456 lines
14 KiB
ArmAsm

/*
* Copyright (c) 2016 Jean-Paul Etienne <fractalclone@gmail.com>
* Copyright (c) 2018 Foundries.io Ltd
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <toolchain.h>
#include <linker/sections.h>
#include <offsets_short.h>
#include <arch/cpu.h>
/* imports */
GDATA(_sw_isr_table)
GTEXT(__soc_is_irq)
GTEXT(__soc_handle_irq)
GTEXT(_Fault)
#ifdef CONFIG_RISCV_SOC_CONTEXT_SAVE
GTEXT(__soc_save_context)
GTEXT(__soc_restore_context)
#endif /* CONFIG_RISCV_SOC_CONTEXT_SAVE */
GTEXT(_k_neg_eagain)
GTEXT(_is_next_thread_current)
GTEXT(z_get_next_ready_thread)
#ifdef CONFIG_TRACING
GTEXT(sys_trace_thread_switched_in)
GTEXT(sys_trace_isr_enter)
#endif
#ifdef CONFIG_IRQ_OFFLOAD
GTEXT(_offload_routine)
#endif
/* exports */
GTEXT(__irq_wrapper)
/* use ABI name of registers for the sake of simplicity */
/*
* Generic architecture-level IRQ handling, along with callouts to
* SoC-specific routines.
*
* Architecture level IRQ handling includes basic context save/restore
* of standard registers and calling ISRs registered at Zephyr's driver
* level.
*
* Since RISC-V does not completely prescribe IRQ handling behavior,
* implementations vary (some implementations also deviate from
* what standard behavior is defined). Hence, the arch level code expects
* the following functions to be provided at the SOC level:
*
* - __soc_is_irq: decide if we're handling an interrupt or an exception
* - __soc_handle_irq: handle SoC-specific details for a pending IRQ
* (e.g. clear a pending bit in a SoC-specific register)
*
* If CONFIG_RISCV_SOC_CONTEXT_SAVE=y, calls to SoC-level context save/restore
* routines are also made here. For details, see the Kconfig help text.
*/
/*
* Handler called upon each exception/interrupt/fault
* In this architecture, system call (ECALL) is used to perform context
* switching or IRQ offloading (when enabled).
*/
SECTION_FUNC(exception.entry, __irq_wrapper)
/* Allocate space on thread stack to save registers */
addi sp, sp, -__z_arch_esf_t_SIZEOF
/*
* Save caller-saved registers on current thread stack.
* NOTE: need to be updated to account for floating-point registers
* floating-point registers should be accounted for when corresponding
* config variable is set
*/
RV_OP_STOREREG ra, __z_arch_esf_t_ra_OFFSET(sp)
RV_OP_STOREREG gp, __z_arch_esf_t_gp_OFFSET(sp)
RV_OP_STOREREG tp, __z_arch_esf_t_tp_OFFSET(sp)
RV_OP_STOREREG t0, __z_arch_esf_t_t0_OFFSET(sp)
RV_OP_STOREREG t1, __z_arch_esf_t_t1_OFFSET(sp)
RV_OP_STOREREG t2, __z_arch_esf_t_t2_OFFSET(sp)
RV_OP_STOREREG t3, __z_arch_esf_t_t3_OFFSET(sp)
RV_OP_STOREREG t4, __z_arch_esf_t_t4_OFFSET(sp)
RV_OP_STOREREG t5, __z_arch_esf_t_t5_OFFSET(sp)
RV_OP_STOREREG t6, __z_arch_esf_t_t6_OFFSET(sp)
RV_OP_STOREREG a0, __z_arch_esf_t_a0_OFFSET(sp)
RV_OP_STOREREG a1, __z_arch_esf_t_a1_OFFSET(sp)
RV_OP_STOREREG a2, __z_arch_esf_t_a2_OFFSET(sp)
RV_OP_STOREREG a3, __z_arch_esf_t_a3_OFFSET(sp)
RV_OP_STOREREG a4, __z_arch_esf_t_a4_OFFSET(sp)
RV_OP_STOREREG a5, __z_arch_esf_t_a5_OFFSET(sp)
RV_OP_STOREREG a6, __z_arch_esf_t_a6_OFFSET(sp)
RV_OP_STOREREG a7, __z_arch_esf_t_a7_OFFSET(sp)
/* Save MEPC register */
csrr t0, mepc
RV_OP_STOREREG t0, __z_arch_esf_t_mepc_OFFSET(sp)
/* Save SOC-specific MSTATUS register */
csrr t0, SOC_MSTATUS_REG
RV_OP_STOREREG t0, __z_arch_esf_t_mstatus_OFFSET(sp)
#ifdef CONFIG_RISCV_SOC_CONTEXT_SAVE
/* Handle context saving at SOC level. */
addi a0, sp, __z_arch_esf_t_soc_context_OFFSET
jal ra, __soc_save_context
#endif /* CONFIG_RISCV_SOC_CONTEXT_SAVE */
#ifdef CONFIG_EXECUTION_BENCHMARKING
call read_timer_start_of_isr
#endif
/*
* Check if exception is the result of an interrupt or not.
* (SOC dependent). Following the RISC-V architecture spec, the MSB
* of the mcause register is used to indicate whether an exception
* is the result of an interrupt or an exception/fault. But for some
* SOCs (like pulpino or riscv-qemu), the MSB is never set to indicate
* interrupt. Hence, check for interrupt/exception via the __soc_is_irq
* function (that needs to be implemented by each SOC). The result is
* returned via register a0 (1: interrupt, 0 exception)
*/
jal ra, __soc_is_irq
/* If a0 != 0, jump to is_interrupt */
addi t1, x0, 0
bnez a0, is_interrupt
/*
* If the exception is the result of an ECALL, check whether to
* perform a context-switch or an IRQ offload. Otherwise call _Fault
* to report the exception.
*/
csrr t0, mcause
li t2, SOC_MCAUSE_EXP_MASK
and t0, t0, t2
li t1, SOC_MCAUSE_ECALL_EXP
/*
* If mcause == SOC_MCAUSE_ECALL_EXP, handle system call,
* otherwise handle fault
*/
beq t0, t1, is_syscall
/*
* Call _Fault to handle exception.
* Stack pointer is pointing to a z_arch_esf_t structure, pass it
* to _Fault (via register a0).
* If _Fault shall return, set return address to no_reschedule
* to restore stack.
*/
addi a0, sp, 0
la ra, no_reschedule
tail _Fault
is_syscall:
/*
* A syscall is the result of an ecall instruction, in which case the
* MEPC will contain the address of the ecall instruction.
* Increment saved MEPC by 4 to prevent triggering the same ecall
* again upon exiting the ISR.
*
* It's safe to always increment by 4, even with compressed
* instructions, because the ecall instruction is always 4 bytes.
*/
RV_OP_LOADREG t0, __z_arch_esf_t_mepc_OFFSET(sp)
addi t0, t0, 4
RV_OP_STOREREG t0, __z_arch_esf_t_mepc_OFFSET(sp)
#ifdef CONFIG_IRQ_OFFLOAD
/*
* Determine if the system call is the result of an IRQ offloading.
* Done by checking if _offload_routine is not pointing to NULL.
* If NULL, jump to reschedule to perform a context-switch, otherwise,
* jump to is_interrupt to handle the IRQ offload.
*/
la t0, _offload_routine
RV_OP_LOADREG t1, 0x00(t0)
bnez t1, is_interrupt
#endif
/*
* Go to reschedule to handle context-switch
*/
j reschedule
is_interrupt:
/*
* Save current thread stack pointer and switch
* stack pointer to interrupt stack.
*/
/* Save thread stack pointer to temp register t0 */
addi t0, sp, 0
/* Switch to interrupt stack */
la t2, _kernel
RV_OP_LOADREG sp, _kernel_offset_to_irq_stack(t2)
/*
* Save thread stack pointer on interrupt stack
* In RISC-V, stack pointer needs to be 16-byte aligned
*/
addi sp, sp, -16
RV_OP_STOREREG t0, 0x00(sp)
on_irq_stack:
/* Increment _kernel.nested variable */
lw t3, _kernel_offset_to_nested(t2)
addi t3, t3, 1
sw t3, _kernel_offset_to_nested(t2)
#ifdef CONFIG_IRQ_OFFLOAD
/*
* If we are here due to a system call, t1 register should != 0.
* In this case, perform IRQ offloading, otherwise jump to call_irq
*/
beqz t1, call_irq
/*
* Call z_irq_do_offload to handle IRQ offloading.
* Set return address to on_thread_stack in order to jump there
* upon returning from z_irq_do_offload
*/
la ra, on_thread_stack
tail z_irq_do_offload
call_irq:
#endif /* CONFIG_IRQ_OFFLOAD */
#ifdef CONFIG_TRACING
call sys_trace_isr_enter
#endif
/* Get IRQ causing interrupt */
csrr a0, mcause
li t0, SOC_MCAUSE_EXP_MASK
and a0, a0, t0
/*
* Clear pending IRQ generating the interrupt at SOC level
* Pass IRQ number to __soc_handle_irq via register a0
*/
jal ra, __soc_handle_irq
/*
* Call corresponding registered function in _sw_isr_table.
* (table is 2-word wide, we should shift index accordingly)
*/
la t0, _sw_isr_table
slli a0, a0, (RV_REGSHIFT + 1)
add t0, t0, a0
/* Load argument in a0 register */
RV_OP_LOADREG a0, 0x00(t0)
/* Load ISR function address in register t1 */
RV_OP_LOADREG t1, RV_REGSIZE(t0)
#ifdef CONFIG_EXECUTION_BENCHMARKING
addi sp, sp, -16
RV_OP_STOREREG a0, 0x00(sp)
RV_OP_STOREREG t1, RV_REGSIZE(sp)
call read_timer_end_of_isr
RV_OP_LOADREG t1, RV_REGSIZE(sp)
RV_OP_LOADREG a0, 0x00(sp)
addi sp, sp, 16
#endif
/* Call ISR function */
jalr ra, t1
on_thread_stack:
/* Get reference to _kernel */
la t1, _kernel
/* Decrement _kernel.nested variable */
lw t2, _kernel_offset_to_nested(t1)
addi t2, t2, -1
sw t2, _kernel_offset_to_nested(t1)
/* Restore thread stack pointer */
RV_OP_LOADREG t0, 0x00(sp)
addi sp, t0, 0
#ifdef CONFIG_STACK_SENTINEL
call z_check_stack_sentinel
la t1, _kernel
#endif
#ifdef CONFIG_PREEMPT_ENABLED
/*
* Check if we need to perform a reschedule
*/
/* Get pointer to _kernel.current */
RV_OP_LOADREG t2, _kernel_offset_to_current(t1)
/*
* Check if next thread to schedule is current thread.
* If yes do not perform a reschedule
*/
RV_OP_LOADREG t3, _kernel_offset_to_ready_q_cache(t1)
beq t3, t2, no_reschedule
#else
j no_reschedule
#endif /* CONFIG_PREEMPT_ENABLED */
reschedule:
#if CONFIG_TRACING
call sys_trace_thread_switched_in
#endif
/* Get reference to _kernel */
la t0, _kernel
/* Get pointer to _kernel.current */
RV_OP_LOADREG t1, _kernel_offset_to_current(t0)
/*
* Save callee-saved registers of current thread
* prior to handle context-switching
*/
RV_OP_STOREREG s0, _thread_offset_to_s0(t1)
RV_OP_STOREREG s1, _thread_offset_to_s1(t1)
RV_OP_STOREREG s2, _thread_offset_to_s2(t1)
RV_OP_STOREREG s3, _thread_offset_to_s3(t1)
RV_OP_STOREREG s4, _thread_offset_to_s4(t1)
RV_OP_STOREREG s5, _thread_offset_to_s5(t1)
RV_OP_STOREREG s6, _thread_offset_to_s6(t1)
RV_OP_STOREREG s7, _thread_offset_to_s7(t1)
RV_OP_STOREREG s8, _thread_offset_to_s8(t1)
RV_OP_STOREREG s9, _thread_offset_to_s9(t1)
RV_OP_STOREREG s10, _thread_offset_to_s10(t1)
RV_OP_STOREREG s11, _thread_offset_to_s11(t1)
/*
* Save stack pointer of current thread and set the default return value
* of z_swap to _k_neg_eagain for the thread.
*/
RV_OP_STOREREG sp, _thread_offset_to_sp(t1)
la t2, _k_neg_eagain
lw t3, 0x00(t2)
sw t3, _thread_offset_to_swap_return_value(t1)
/* Get next thread to schedule. */
RV_OP_LOADREG t1, _kernel_offset_to_ready_q_cache(t0)
/*
* Set _kernel.current to new thread loaded in t1
*/
RV_OP_STOREREG t1, _kernel_offset_to_current(t0)
/* Switch to new thread stack */
RV_OP_LOADREG sp, _thread_offset_to_sp(t1)
/* Restore callee-saved registers of new thread */
RV_OP_LOADREG s0, _thread_offset_to_s0(t1)
RV_OP_LOADREG s1, _thread_offset_to_s1(t1)
RV_OP_LOADREG s2, _thread_offset_to_s2(t1)
RV_OP_LOADREG s3, _thread_offset_to_s3(t1)
RV_OP_LOADREG s4, _thread_offset_to_s4(t1)
RV_OP_LOADREG s5, _thread_offset_to_s5(t1)
RV_OP_LOADREG s6, _thread_offset_to_s6(t1)
RV_OP_LOADREG s7, _thread_offset_to_s7(t1)
RV_OP_LOADREG s8, _thread_offset_to_s8(t1)
RV_OP_LOADREG s9, _thread_offset_to_s9(t1)
RV_OP_LOADREG s10, _thread_offset_to_s10(t1)
RV_OP_LOADREG s11, _thread_offset_to_s11(t1)
#ifdef CONFIG_EXECUTION_BENCHMARKING
addi sp, sp, -__z_arch_esf_t_SIZEOF
RV_OP_STOREREG ra, __z_arch_esf_t_ra_OFFSET(sp)
RV_OP_STOREREG gp, __z_arch_esf_t_gp_OFFSET(sp)
RV_OP_STOREREG tp, __z_arch_esf_t_tp_OFFSET(sp)
RV_OP_STOREREG t0, __z_arch_esf_t_t0_OFFSET(sp)
RV_OP_STOREREG t1, __z_arch_esf_t_t1_OFFSET(sp)
RV_OP_STOREREG t2, __z_arch_esf_t_t2_OFFSET(sp)
RV_OP_STOREREG t3, __z_arch_esf_t_t3_OFFSET(sp)
RV_OP_STOREREG t4, __z_arch_esf_t_t4_OFFSET(sp)
RV_OP_STOREREG t5, __z_arch_esf_t_t5_OFFSET(sp)
RV_OP_STOREREG t6, __z_arch_esf_t_t6_OFFSET(sp)
RV_OP_STOREREG a0, __z_arch_esf_t_a0_OFFSET(sp)
RV_OP_STOREREG a1, __z_arch_esf_t_a1_OFFSET(sp)
RV_OP_STOREREG a2, __z_arch_esf_t_a2_OFFSET(sp)
RV_OP_STOREREG a3, __z_arch_esf_t_a3_OFFSET(sp)
RV_OP_STOREREG a4, __z_arch_esf_t_a4_OFFSET(sp)
RV_OP_STOREREG a5, __z_arch_esf_t_a5_OFFSET(sp)
RV_OP_STOREREG a6, __z_arch_esf_t_a6_OFFSET(sp)
RV_OP_STOREREG a7, __z_arch_esf_t_a7_OFFSET(sp)
call read_timer_end_of_swap
RV_OP_LOADREG ra, __z_arch_esf_t_ra_OFFSET(sp)
RV_OP_LOADREG gp, __z_arch_esf_t_gp_OFFSET(sp)
RV_OP_LOADREG tp, __z_arch_esf_t_tp_OFFSET(sp)
RV_OP_LOADREG t0, __z_arch_esf_t_t0_OFFSET(sp)
RV_OP_LOADREG t1, __z_arch_esf_t_t1_OFFSET(sp)
RV_OP_LOADREG t2, __z_arch_esf_t_t2_OFFSET(sp)
RV_OP_LOADREG t3, __z_arch_esf_t_t3_OFFSET(sp)
RV_OP_LOADREG t4, __z_arch_esf_t_t4_OFFSET(sp)
RV_OP_LOADREG t5, __z_arch_esf_t_t5_OFFSET(sp)
RV_OP_LOADREG t6, __z_arch_esf_t_t6_OFFSET(sp)
RV_OP_LOADREG a0, __z_arch_esf_t_a0_OFFSET(sp)
RV_OP_LOADREG a1, __z_arch_esf_t_a1_OFFSET(sp)
RV_OP_LOADREG a2, __z_arch_esf_t_a2_OFFSET(sp)
RV_OP_LOADREG a3, __z_arch_esf_t_a3_OFFSET(sp)
RV_OP_LOADREG a4, __z_arch_esf_t_a4_OFFSET(sp)
RV_OP_LOADREG a5, __z_arch_esf_t_a5_OFFSET(sp)
RV_OP_LOADREG a6, __z_arch_esf_t_a6_OFFSET(sp)
RV_OP_LOADREG a7, __z_arch_esf_t_a7_OFFSET(sp)
/* Release stack space */
addi sp, sp, __z_arch_esf_t_SIZEOF
#endif
no_reschedule:
#ifdef CONFIG_RISCV_SOC_CONTEXT_SAVE
/* Restore context at SOC level */
addi a0, sp, __z_arch_esf_t_soc_context_OFFSET
jal ra, __soc_restore_context
#endif /* CONFIG_RISCV_SOC_CONTEXT_SAVE */
/* Restore MEPC register */
RV_OP_LOADREG t0, __z_arch_esf_t_mepc_OFFSET(sp)
csrw mepc, t0
/* Restore SOC-specific MSTATUS register */
RV_OP_LOADREG t0, __z_arch_esf_t_mstatus_OFFSET(sp)
csrw SOC_MSTATUS_REG, t0
/* Restore caller-saved registers from thread stack */
RV_OP_LOADREG ra, __z_arch_esf_t_ra_OFFSET(sp)
RV_OP_LOADREG gp, __z_arch_esf_t_gp_OFFSET(sp)
RV_OP_LOADREG tp, __z_arch_esf_t_tp_OFFSET(sp)
RV_OP_LOADREG t0, __z_arch_esf_t_t0_OFFSET(sp)
RV_OP_LOADREG t1, __z_arch_esf_t_t1_OFFSET(sp)
RV_OP_LOADREG t2, __z_arch_esf_t_t2_OFFSET(sp)
RV_OP_LOADREG t3, __z_arch_esf_t_t3_OFFSET(sp)
RV_OP_LOADREG t4, __z_arch_esf_t_t4_OFFSET(sp)
RV_OP_LOADREG t5, __z_arch_esf_t_t5_OFFSET(sp)
RV_OP_LOADREG t6, __z_arch_esf_t_t6_OFFSET(sp)
RV_OP_LOADREG a0, __z_arch_esf_t_a0_OFFSET(sp)
RV_OP_LOADREG a1, __z_arch_esf_t_a1_OFFSET(sp)
RV_OP_LOADREG a2, __z_arch_esf_t_a2_OFFSET(sp)
RV_OP_LOADREG a3, __z_arch_esf_t_a3_OFFSET(sp)
RV_OP_LOADREG a4, __z_arch_esf_t_a4_OFFSET(sp)
RV_OP_LOADREG a5, __z_arch_esf_t_a5_OFFSET(sp)
RV_OP_LOADREG a6, __z_arch_esf_t_a6_OFFSET(sp)
RV_OP_LOADREG a7, __z_arch_esf_t_a7_OFFSET(sp)
/* Release stack space */
addi sp, sp, __z_arch_esf_t_SIZEOF
/* Call SOC_ERET to exit ISR */
SOC_ERET