zephyr/subsys/usb/usb_device.c
Andrei Emeltchenko a95f6385f2 usb: device: Do not return error if ep already enabled
Fixes USB3CV Tool tests. One case is enabling endpoints with Set
Interface after Set Configuration. In this case we report warning and
continue without returning error.

Signed-off-by: Andrei Emeltchenko <andrei.emeltchenko@intel.com>
2019-05-22 11:19:49 +02:00

1743 lines
42 KiB
C

/*
* LPCUSB, an USB device driver for LPC microcontrollers
* Copyright (C) 2006 Bertrik Sikken (bertrik@sikken.nl)
* Copyright (c) 2016 Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file
* @brief USB device core layer
*
* This module handles control transfer handler, standard request handler and
* USB Interface for customer application.
*
* Control transfers handler is normally installed on the
* endpoint 0 callback.
*
* Control transfers can be of the following type:
* 0 Standard;
* 1 Class;
* 2 Vendor;
* 3 Reserved.
*
* A callback can be installed for each of these control transfers using
* usb_register_request_handler.
* When an OUT request arrives, data is collected in the data store provided
* with the usb_register_request_handler call. When the transfer is done, the
* callback is called.
* When an IN request arrives, the callback is called immediately to either
* put the control transfer data in the data store, or to get a pointer to
* control transfer data. The data is then packetized and sent to the host.
*
* Standard request handler handles the 'chapter 9' processing, specifically
* the standard device requests in table 9-3 from the universal serial bus
* specification revision 2.0
*/
#include <errno.h>
#include <stddef.h>
#include <misc/util.h>
#include <misc/__assert.h>
#include <init.h>
#if defined(CONFIG_USB_VBUS_GPIO)
#include <gpio.h>
#endif
#include <misc/byteorder.h>
#include <usb/usb_device.h>
#include <usb/usbstruct.h>
#include <usb/usb_common.h>
#include <usb_descriptor.h>
#define LOG_LEVEL CONFIG_USB_DEVICE_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(usb_device);
#include <usb/bos.h>
#include <os_desc.h>
#define MAX_DESC_HANDLERS 4 /** Device, interface, endpoint, other */
/* general descriptor field offsets */
#define DESC_bLength 0 /** Length offset */
#define DESC_bDescriptorType 1 /** Descriptor type offset */
/* config descriptor field offsets */
#define CONF_DESC_wTotalLength 2 /** Total length offset */
#define CONF_DESC_bConfigurationValue 5 /** Configuration value offset */
#define CONF_DESC_bmAttributes 7 /** configuration characteristics */
/* interface descriptor field offsets */
#define INTF_DESC_bInterfaceNumber 2 /** Interface number offset */
#define INTF_DESC_bAlternateSetting 3 /** Alternate setting offset */
/* endpoint descriptor field offsets */
#define ENDP_DESC_bEndpointAddress 2 /** Endpoint address offset */
#define ENDP_DESC_bmAttributes 3 /** Bulk or interrupt? */
#define ENDP_DESC_wMaxPacketSize 4 /** Maximum packet size offset */
#define MAX_NUM_REQ_HANDLERS 4
#define MAX_STD_REQ_MSG_SIZE 8
#define MAX_NUM_TRANSFERS 4 /** Max number of parallel transfers */
/* Default USB control EP, always 0 and 0x80 */
#define USB_CONTROL_OUT_EP0 0
#define USB_CONTROL_IN_EP0 0x80
/* Linker-defined symbols bound the USB descriptor structs */
extern struct usb_cfg_data __usb_data_start[];
extern struct usb_cfg_data __usb_data_end[];
struct usb_transfer_data {
/** endpoint associated to the transfer */
u8_t ep;
/** Transfer status */
int status;
/** Transfer read/write buffer */
u8_t *buffer;
/** Transfer buffer size */
size_t bsize;
/** Transferred size */
size_t tsize;
/** Transfer callback */
usb_transfer_callback cb;
/** Transfer caller private data */
void *priv;
/** Transfer synchronization semaphore */
struct k_sem sem;
/** Transfer read/write work */
struct k_work work;
/** Transfer flags */
unsigned int flags;
};
static void usb_transfer_work(struct k_work *item);
static struct usb_dev_priv {
/** Setup packet */
struct usb_setup_packet setup;
/** Pointer to data buffer */
u8_t *data_buf;
/** Eemaining bytes in buffer */
s32_t data_buf_residue;
/** Total length of control transfer */
s32_t data_buf_len;
/** Installed custom request handler */
usb_request_handler custom_req_handler;
/** Installed vendor request handler */
usb_request_handler vendor_req_handler;
/** USB stack status clalback */
usb_dc_status_callback status_callback;
/** Pointer to registered descriptors */
const u8_t *descriptors;
/** Array of installed request handler callbacks */
usb_request_handler req_handlers[MAX_NUM_REQ_HANDLERS];
/** Array of installed request data pointers */
u8_t *data_store[MAX_NUM_REQ_HANDLERS];
/* Buffer used for storing standard usb request data */
u8_t std_req_data[MAX_STD_REQ_MSG_SIZE];
/** Variable to check whether the usb has been enabled */
bool enabled;
/** Variable to check whether the usb has been configured */
bool configured;
/** Currently selected configuration */
u8_t configuration;
/** Remote wakeup feature status */
bool remote_wakeup;
/** Transfer list */
struct usb_transfer_data transfer[MAX_NUM_TRANSFERS];
} usb_dev;
/*
* @brief print the contents of a setup packet
*
* @param [in] setup The setup packet
*
*/
static void usb_print_setup(struct usb_setup_packet *setup)
{
/* avoid compiler warning if LOG_DBG is not defined */
ARG_UNUSED(setup);
LOG_DBG("Setup: %x %x %x %x %x",
setup->bmRequestType,
setup->bRequest,
sys_le16_to_cpu(setup->wValue),
sys_le16_to_cpu(setup->wIndex),
sys_le16_to_cpu(setup->wLength));
}
/*
* @brief handle a request by calling one of the installed request handlers
*
* Local function to handle a request by calling one of the installed request
* handlers. In case of data going from host to device, the data is at *ppbData.
* In case of data going from device to host, the handler can either choose to
* write its data at *ppbData or update the data pointer.
*
* @param [in] setup The setup packet
* @param [in,out] len Pointer to data length
* @param [in,out] data Data buffer
*
* @return true if the request was handles successfully
*/
static bool usb_handle_request(struct usb_setup_packet *setup,
s32_t *len, u8_t **data)
{
u32_t type = REQTYPE_GET_TYPE(setup->bmRequestType);
usb_request_handler handler = usb_dev.req_handlers[type];
LOG_DBG("** %d **", type);
if (type >= MAX_NUM_REQ_HANDLERS) {
LOG_DBG("Error Incorrect iType %d", type);
return false;
}
if (handler == NULL) {
LOG_DBG("No handler for reqtype %d", type);
return false;
}
if ((*handler)(setup, len, data) < 0) {
LOG_DBG("Handler Error %d", type);
usb_print_setup(setup);
return false;
}
return true;
}
/*
* @brief send next chunk of data (possibly 0 bytes) to host
*
* @return N/A
*/
static void usb_data_to_host(u16_t len)
{
u32_t chunk = usb_dev.data_buf_residue;
/*Always EP0 for control*/
usb_dc_ep_write(USB_CONTROL_IN_EP0, usb_dev.data_buf, chunk, &chunk);
usb_dev.data_buf += chunk;
usb_dev.data_buf_residue -= chunk;
/*
* Send ZLP when host asks for a bigger length and the last chunk
* is wMaxPacketSize long, to indicate the last packet.
*/
if (!usb_dev.data_buf_residue && chunk == USB_MAX_CTRL_MPS
&& len > chunk) {
int ret;
do {
ret = usb_dc_ep_write(USB_CONTROL_IN_EP0, NULL, 0,
NULL);
} while (ret == -EAGAIN);
}
}
/*
* @brief handle IN/OUT transfers on EP0
*
* @param [in] ep Endpoint address
* @param [in] ep_status Endpoint status
*
* @return N/A
*/
static void usb_handle_control_transfer(u8_t ep,
enum usb_dc_ep_cb_status_code ep_status)
{
u32_t chunk = 0U;
u32_t type = 0U;
struct usb_setup_packet *setup = &usb_dev.setup;
LOG_DBG("ep %x, status %x", ep, ep_status);
if (ep == USB_CONTROL_OUT_EP0 && ep_status == USB_DC_EP_SETUP) {
u16_t length;
/*
* OUT transfer, Setup packet,
* reset request message state machine
*/
if (usb_dc_ep_read(ep,
(u8_t *)setup, sizeof(*setup), NULL) < 0) {
LOG_DBG("Read Setup Packet failed");
usb_dc_ep_set_stall(USB_CONTROL_IN_EP0);
return;
}
length = sys_le16_to_cpu(setup->wLength);
/* Defaults for data pointer and residue */
type = REQTYPE_GET_TYPE(setup->bmRequestType);
usb_dev.data_buf = usb_dev.data_store[type];
if (!usb_dev.data_buf) {
LOG_DBG("buffer not available");
usb_dc_ep_set_stall(USB_CONTROL_OUT_EP0);
usb_dc_ep_set_stall(USB_CONTROL_IN_EP0);
return;
}
usb_dev.data_buf_residue = length;
usb_dev.data_buf_len = length;
if (length &&
REQTYPE_GET_DIR(setup->bmRequestType)
== REQTYPE_DIR_TO_DEVICE) {
return;
}
/* Ask installed handler to process request */
if (!usb_handle_request(setup,
&usb_dev.data_buf_len,
&usb_dev.data_buf)) {
LOG_DBG("usb_handle_request failed");
usb_dc_ep_set_stall(USB_CONTROL_IN_EP0);
return;
}
/* Send smallest of requested and offered length */
usb_dev.data_buf_residue = MIN(usb_dev.data_buf_len, length);
/* Send first part (possibly a zero-length status message) */
usb_data_to_host(length);
} else if (ep == USB_CONTROL_OUT_EP0) {
/* OUT transfer, data or status packets */
if (usb_dev.data_buf_residue <= 0) {
/* absorb zero-length status message */
if (usb_dc_ep_read(USB_CONTROL_OUT_EP0,
usb_dev.data_buf, 0, &chunk) < 0) {
LOG_DBG("Read DATA Packet failed");
usb_dc_ep_set_stall(USB_CONTROL_IN_EP0);
}
return;
}
if (usb_dc_ep_read(USB_CONTROL_OUT_EP0,
usb_dev.data_buf,
usb_dev.data_buf_residue, &chunk) < 0) {
LOG_DBG("Read DATA Packet failed");
usb_dc_ep_set_stall(USB_CONTROL_IN_EP0);
usb_dc_ep_set_stall(USB_CONTROL_OUT_EP0);
return;
}
usb_dev.data_buf += chunk;
usb_dev.data_buf_residue -= chunk;
if (usb_dev.data_buf_residue == 0) {
/* Received all, send data to handler */
type = REQTYPE_GET_TYPE(setup->bmRequestType);
usb_dev.data_buf = usb_dev.data_store[type];
if (!usb_handle_request(setup,
&usb_dev.data_buf_len,
&usb_dev.data_buf)) {
LOG_DBG("usb_handle_request1 failed");
usb_dc_ep_set_stall(USB_CONTROL_IN_EP0);
return;
}
/*Send status to host*/
LOG_DBG(">> usb_data_to_host(2)");
usb_data_to_host(sys_le16_to_cpu(setup->wLength));
}
} else if (ep == USB_CONTROL_IN_EP0) {
/* Send more data if available */
if (usb_dev.data_buf_residue != 0) {
usb_data_to_host(sys_le16_to_cpu(setup->wLength));
}
} else {
__ASSERT_NO_MSG(false);
}
}
/*
* @brief register a callback for handling requests
*
* @param [in] type Type of request, e.g. REQTYPE_TYPE_STANDARD
* @param [in] handler Callback function pointer
* @param [in] data_store Data storage area for this type of request
*
* @return N/A
*/
static void usb_register_request_handler(s32_t type,
usb_request_handler handler,
u8_t *data_store)
{
usb_dev.req_handlers[type] = handler;
usb_dev.data_store[type] = data_store;
}
/*
* @brief register a pointer to a descriptor block
*
* This function registers a pointer to a descriptor block containing all
* descriptors for the device.
*
* @param [in] usb_descriptors The descriptor byte array
*/
static void usb_register_descriptors(const u8_t *usb_descriptors)
{
usb_dev.descriptors = usb_descriptors;
}
/*
* @brief get specified USB descriptor
*
* This function parses the list of installed USB descriptors and attempts
* to find the specified USB descriptor.
*
* @param [in] type_index Type and index of the descriptor
* @param [in] lang_id Language ID of the descriptor (currently unused)
* @param [out] len Descriptor length
* @param [out] data Descriptor data
*
* @return true if the descriptor was found, false otherwise
*/
static bool usb_get_descriptor(u16_t type_index, u16_t lang_id,
s32_t *len, u8_t **data)
{
u8_t type = 0U;
u8_t index = 0U;
u8_t *p = NULL;
s32_t cur_index = 0;
bool found = false;
/*Avoid compiler warning until this is used for something*/
ARG_UNUSED(lang_id);
type = GET_DESC_TYPE(type_index);
index = GET_DESC_INDEX(type_index);
/*
* Invalid types of descriptors,
* see USB Spec. Revision 2.0, 9.4.3 Get Descriptor
*/
if ((type == DESC_INTERFACE) || (type == DESC_ENDPOINT) ||
(type > DESC_OTHER_SPEED)) {
return false;
}
p = (u8_t *)usb_dev.descriptors;
cur_index = 0;
while (p[DESC_bLength] != 0U) {
if (p[DESC_bDescriptorType] == type) {
if (cur_index == index) {
found = true;
break;
}
cur_index++;
}
/* skip to next descriptor */
p += p[DESC_bLength];
}
if (found) {
/* set data pointer */
*data = p;
/* get length from structure */
if (type == DESC_CONFIGURATION) {
/* configuration descriptor is an
* exception, length is at offset
* 2 and 3
*/
*len = (p[CONF_DESC_wTotalLength]) |
(p[CONF_DESC_wTotalLength + 1] << 8);
} else {
/* normally length is at offset 0 */
*len = p[DESC_bLength];
}
} else {
/* nothing found */
LOG_DBG("Desc %x not found!", type_index);
}
return found;
}
static bool set_endpoint(const struct usb_ep_descriptor *ep_desc)
{
struct usb_dc_ep_cfg_data ep_cfg;
ep_cfg.ep_addr = ep_desc->bEndpointAddress;
ep_cfg.ep_mps = sys_le16_to_cpu(ep_desc->wMaxPacketSize);
if (ep_desc->bmAttributes > USB_DC_EP_INTERRUPT) {
return false;
}
ep_cfg.ep_type = ep_desc->bmAttributes;
LOG_DBG("Configure endpoint 0x%x type %u MPS %u",
ep_cfg.ep_addr, ep_cfg.ep_type, ep_cfg.ep_mps);
if (usb_dc_ep_configure(&ep_cfg) < 0) {
LOG_WRN("Failed to configure endpoint %x", ep_cfg.ep_addr);
}
if (usb_dc_ep_enable(ep_cfg.ep_addr) < 0) {
LOG_WRN("Failed to enable endpoint %x", ep_cfg.ep_addr);
}
usb_dev.configured = true;
return true;
}
/*
* @brief set USB configuration
*
* This function configures the device according to the specified configuration
* index and alternate setting by parsing the installed USB descriptor list.
* A configuration index of 0 unconfigures the device.
*
* @param [in] config_index Configuration index
* @param [in] alt_setting Alternate setting number
*
* @return true if successfully configured false if error or unconfigured
*/
static bool usb_set_configuration(u8_t config_index, u8_t alt_setting)
{
u8_t *p = (u8_t *)usb_dev.descriptors;
u8_t cur_alt_setting = 0xFF;
u8_t cur_config = 0xFF;
bool found = false;
if (config_index == 0U) {
/* TODO: unconfigure device */
LOG_DBG("Device not configured - invalid configuration");
return true;
}
/* configure endpoints for this configuration/altsetting */
while (p[DESC_bLength] != 0U) {
switch (p[DESC_bDescriptorType]) {
case DESC_CONFIGURATION:
/* remember current configuration index */
cur_config = p[CONF_DESC_bConfigurationValue];
if (cur_config == config_index) {
found = true;
}
break;
case DESC_INTERFACE:
/* remember current alternate setting */
cur_alt_setting =
p[INTF_DESC_bAlternateSetting];
break;
case DESC_ENDPOINT:
if ((cur_config != config_index) ||
(cur_alt_setting != alt_setting)) {
break;
}
found = set_endpoint((struct usb_ep_descriptor *)p);
break;
default:
break;
}
/* skip to next descriptor */
p += p[DESC_bLength];
}
if (usb_dev.status_callback) {
usb_dev.status_callback(USB_DC_CONFIGURED, &config_index);
}
return found;
}
/*
* @brief set USB interface
*
* @param [in] iface Interface index
* @param [in] alt_setting Alternate setting number
*
* @return true if successfully configured false if error or unconfigured
*/
static bool usb_set_interface(u8_t iface, u8_t alt_setting)
{
const u8_t *p = usb_dev.descriptors;
const u8_t *if_desc = NULL;
u8_t cur_alt_setting = 0xFF;
u8_t cur_iface = 0xFF;
bool found = false;
LOG_DBG("iface %u alt_setting %u", iface, alt_setting);
while (p[DESC_bLength] != 0U) {
switch (p[DESC_bDescriptorType]) {
case DESC_INTERFACE:
/* remember current alternate setting */
cur_alt_setting = p[INTF_DESC_bAlternateSetting];
cur_iface = p[INTF_DESC_bInterfaceNumber];
if (cur_iface == iface &&
cur_alt_setting == alt_setting) {
if_desc = (void *)p;
}
LOG_DBG("iface_num %u alt_set %u", iface, alt_setting);
break;
case DESC_ENDPOINT:
if ((cur_iface != iface) ||
(cur_alt_setting != alt_setting)) {
break;
}
found = set_endpoint((struct usb_ep_descriptor *)p);
break;
default:
break;
}
/* skip to next descriptor */
p += p[DESC_bLength];
}
if (usb_dev.status_callback) {
usb_dev.status_callback(USB_DC_INTERFACE, if_desc);
}
return found;
}
/*
* @brief handle a standard device request
*
* @param [in] setup The setup packet
* @param [in,out] len Pointer to data length
* @param [in,out] data_buf Data buffer
*
* @return true if the request was handled successfully
*/
static bool usb_handle_std_device_req(struct usb_setup_packet *setup,
s32_t *len, u8_t **data_buf)
{
u16_t value = sys_le16_to_cpu(setup->wValue);
u16_t index = sys_le16_to_cpu(setup->wIndex);
bool ret = true;
u8_t *data = *data_buf;
switch (setup->bRequest) {
case REQ_GET_STATUS:
LOG_DBG("REQ_GET_STATUS");
/* bit 0: self-powered */
/* bit 1: remote wakeup */
data[0] = 0U;
data[1] = 0U;
if (IS_ENABLED(CONFIG_USB_DEVICE_REMOTE_WAKEUP)) {
data[0] |= (usb_dev.remote_wakeup ?
DEVICE_STATUS_REMOTE_WAKEUP : 0);
}
*len = 2;
break;
case REQ_SET_ADDRESS:
LOG_DBG("REQ_SET_ADDRESS, addr 0x%x", value);
usb_dc_set_address(value);
break;
case REQ_GET_DESCRIPTOR:
LOG_DBG("REQ_GET_DESCRIPTOR");
ret = usb_get_descriptor(value, index, len, data_buf);
break;
case REQ_GET_CONFIGURATION:
LOG_DBG("REQ_GET_CONFIGURATION");
/* indicate if we are configured */
data[0] = usb_dev.configuration;
*len = 1;
break;
case REQ_SET_CONFIGURATION:
value &= 0xFF;
LOG_DBG("REQ_SET_CONFIGURATION, conf 0x%x", value);
if (!usb_set_configuration(value, 0)) {
LOG_DBG("USB Set Configuration failed");
ret = false;
} else {
/* configuration successful,
* update current configuration
*/
usb_dev.configuration = value;
}
break;
case REQ_CLEAR_FEATURE:
LOG_DBG("REQ_CLEAR_FEATURE");
ret = false;
if (IS_ENABLED(CONFIG_USB_DEVICE_REMOTE_WAKEUP)) {
if (value == FEA_REMOTE_WAKEUP) {
usb_dev.remote_wakeup = false;
ret = true;
}
}
break;
case REQ_SET_FEATURE:
LOG_DBG("REQ_SET_FEATURE");
ret = false;
if (IS_ENABLED(CONFIG_USB_DEVICE_REMOTE_WAKEUP)) {
if (value == FEA_REMOTE_WAKEUP) {
usb_dev.remote_wakeup = true;
ret = true;
}
}
if (value == FEA_TEST_MODE) {
/* put TEST_MODE code here */
}
break;
case REQ_SET_DESCRIPTOR:
LOG_DBG("Device req %x not implemented", setup->bRequest);
ret = false;
break;
default:
LOG_DBG("Illegal device req %x", setup->bRequest);
ret = false;
break;
}
return ret;
}
/*
* @brief handle a standard interface request
*
* @param [in] setup The setup packet
* @param [in,out] len Pointer to data length
* @param [in] data_buf Data buffer
*
* @return true if the request was handled successfully
*/
static bool usb_handle_std_interface_req(struct usb_setup_packet *setup,
s32_t *len, u8_t **data_buf)
{
u8_t *data = *data_buf;
switch (setup->bRequest) {
case REQ_GET_STATUS:
/* no bits specified */
data[0] = 0U;
data[1] = 0U;
*len = 2;
break;
case REQ_CLEAR_FEATURE:
case REQ_SET_FEATURE:
/* not defined for interface */
return false;
case REQ_GET_INTERFACE:
/* there is only one interface, return n-1 (= 0) */
data[0] = 0U;
*len = 1;
break;
case REQ_SET_INTERFACE:
LOG_DBG("REQ_SET_INTERFACE");
usb_set_interface(sys_le16_to_cpu(setup->wIndex),
sys_le16_to_cpu(setup->wValue));
*len = 0;
break;
default:
LOG_DBG("Illegal interface req %d", setup->bRequest);
return false;
}
return true;
}
/*
* @brief handle a standard endpoint request
*
* @param [in] setup The setup packet
* @param [in,out] len Pointer to data length
* @param [in] data_buf Data buffer
*
* @return true if the request was handled successfully
*/
static bool usb_handle_std_endpoint_req(struct usb_setup_packet *setup,
s32_t *len, u8_t **data_buf)
{
u8_t ep = sys_le16_to_cpu(setup->wIndex);
u8_t *data = *data_buf;
switch (setup->bRequest) {
case REQ_GET_STATUS:
/* bit 0 = endpointed halted or not */
usb_dc_ep_is_stalled(ep, &data[0]);
data[1] = 0U;
*len = 2;
break;
case REQ_CLEAR_FEATURE:
if (sys_le16_to_cpu(setup->wValue) == FEA_ENDPOINT_HALT) {
/* clear HALT by unstalling */
LOG_INF("... EP clear halt %x", ep);
usb_dc_ep_clear_stall(ep);
if (usb_dev.status_callback) {
usb_dev.status_callback(USB_DC_CLEAR_HALT, &ep);
}
break;
}
/* only ENDPOINT_HALT defined for endpoints */
return false;
case REQ_SET_FEATURE:
if (sys_le16_to_cpu(setup->wValue) == FEA_ENDPOINT_HALT) {
/* set HALT by stalling */
LOG_INF("--- EP SET halt %x", ep);
usb_dc_ep_set_stall(ep);
if (usb_dev.status_callback) {
usb_dev.status_callback(USB_DC_SET_HALT, &ep);
}
break;
}
/* only ENDPOINT_HALT defined for endpoints */
return false;
case REQ_SYNCH_FRAME:
LOG_DBG("EP req %d not implemented", setup->bRequest);
return false;
default:
LOG_DBG("Illegal EP req %d", setup->bRequest);
return false;
}
return true;
}
/*
* @brief default handler for standard ('chapter 9') requests
*
* If a custom request handler was installed, this handler is called first.
*
* @param [in] setup The setup packet
* @param [in,out] len Pointer to data length
* @param [in] data_buf Data buffer
*
* @return true if the request was handled successfully
*/
static int usb_handle_standard_request(struct usb_setup_packet *setup,
s32_t *len, u8_t **data_buf)
{
int rc = 0;
if (!usb_handle_bos(setup, len, data_buf)) {
return 0;
}
if (!usb_handle_os_desc(setup, len, data_buf)) {
return 0;
}
/* try the custom request handler first */
if (usb_dev.custom_req_handler &&
!usb_dev.custom_req_handler(setup, len, data_buf)) {
return 0;
}
switch (REQTYPE_GET_RECIP(setup->bmRequestType)) {
case REQTYPE_RECIP_DEVICE:
if (usb_handle_std_device_req(setup, len, data_buf) == false)
rc = -EINVAL;
break;
case REQTYPE_RECIP_INTERFACE:
if (usb_handle_std_interface_req(setup, len, data_buf) == false)
rc = -EINVAL;
break;
case REQTYPE_RECIP_ENDPOINT:
if (usb_handle_std_endpoint_req(setup, len, data_buf) == false)
rc = -EINVAL;
break;
default:
rc = -EINVAL;
}
return rc;
}
static int usb_handle_vendor_request(struct usb_setup_packet *setup,
s32_t *len, u8_t **data_buf)
{
LOG_DBG("");
if (usb_os_desc_enabled()) {
if (!usb_handle_os_desc_feature(setup, len, data_buf)) {
return 0;
}
}
if (usb_dev.vendor_req_handler) {
return usb_dev.vendor_req_handler(setup, len, data_buf);
}
return -ENOTSUP;
}
/*
* @brief Registers a callback for custom device requests
*
* In usb_register_custom_req_handler, the custom request handler gets a first
* chance at handling the request before it is handed over to the 'chapter 9'
* request handler.
*
* This can be used for example in HID devices, where a REQ_GET_DESCRIPTOR
* request is sent to an interface, which is not covered by the 'chapter 9'
* specification.
*
* @param [in] handler Callback function pointer
*/
static void usb_register_custom_req_handler(usb_request_handler handler)
{
usb_dev.custom_req_handler = handler;
}
/*
* @brief register a callback for device status
*
* This function registers a callback for device status. The registered callback
* is used to report changes in the status of the device controller.
*
* @param [in] cb Callback function pointer
*/
static void usb_register_status_callback(usb_dc_status_callback cb)
{
usb_dev.status_callback = cb;
}
static int foreach_ep(int (* endpoint_callback)(const struct usb_ep_cfg_data *))
{
size_t size = (__usb_data_end - __usb_data_start);
for (size_t i = 0; i < size; i++) {
struct usb_cfg_data *cfg = &__usb_data_start[i];
struct usb_ep_cfg_data *ep_data = cfg->endpoint;
for (u8_t n = 0; n < cfg->num_endpoints; n++) {
int ret;
ret = endpoint_callback(&ep_data[n]);
if (ret < 0) {
return ret;
}
}
}
return 0;
}
static int disable_interface_ep(const struct usb_ep_cfg_data *ep_data)
{
return usb_dc_ep_disable(ep_data->ep_addr);
}
static void forward_status_cb(enum usb_dc_status_code status, const u8_t *param)
{
size_t size = (__usb_data_end - __usb_data_start);
if (status == USB_DC_DISCONNECTED || status == USB_DC_SUSPEND) {
if (usb_dev.configured) {
usb_cancel_transfers();
foreach_ep(disable_interface_ep);
usb_dev.configured = false;
}
}
for (size_t i = 0; i < size; i++) {
struct usb_cfg_data *cfg = &__usb_data_start[i];
if (cfg->cb_usb_status) {
cfg->cb_usb_status(cfg, status, param);
}
}
}
/**
* @brief turn on/off USB VBUS voltage
*
* @param on Set to false to turn off and to true to turn on VBUS
*
* @return 0 on success, negative errno code on fail
*/
static int usb_vbus_set(bool on)
{
#if defined(CONFIG_USB_VBUS_GPIO)
int ret = 0;
struct device *gpio_dev;
gpio_dev = device_get_binding(CONFIG_USB_VBUS_GPIO_DEV_NAME);
if (!gpio_dev) {
LOG_DBG("USB requires GPIO. Cannot find %s!",
CONFIG_USB_VBUS_GPIO_DEV_NAME);
return -ENODEV;
}
/* Enable USB IO */
ret = gpio_pin_configure(gpio_dev, CONFIG_USB_VBUS_GPIO_PIN_NUM,
GPIO_DIR_OUT);
if (ret) {
return ret;
}
ret = gpio_pin_write(gpio_dev, CONFIG_USB_VBUS_GPIO_PIN_NUM,
on == true ? 1 : 0);
if (ret) {
return ret;
}
#endif
return 0;
}
int usb_set_config(struct usb_cfg_data *config)
{
if (!config) {
return -EINVAL;
}
/* register descriptors */
usb_register_descriptors(config->usb_device_description);
/* register standard request handler */
usb_register_request_handler(REQTYPE_TYPE_STANDARD,
usb_handle_standard_request,
usb_dev.std_req_data);
/* register class request handlers for each interface*/
if (config->interface.class_handler != NULL) {
usb_register_request_handler(REQTYPE_TYPE_CLASS,
config->interface.class_handler,
config->interface.payload_data);
}
/* register vendor request handler */
if (config->interface.vendor_handler || usb_os_desc_enabled()) {
usb_register_request_handler(REQTYPE_TYPE_VENDOR,
usb_handle_vendor_request,
config->interface.vendor_data);
if (config->interface.vendor_handler) {
usb_dev.vendor_req_handler =
config->interface.vendor_handler;
}
}
/* register class request handlers for each interface*/
if (config->interface.custom_handler != NULL) {
usb_register_custom_req_handler(
config->interface.custom_handler);
}
return 0;
}
int usb_deconfig(void)
{
/* unregister descriptors */
usb_register_descriptors(NULL);
/* unegister standard request handler */
usb_register_request_handler(REQTYPE_TYPE_STANDARD, NULL, NULL);
/* unregister class request handlers for each interface*/
usb_register_request_handler(REQTYPE_TYPE_CLASS, NULL, NULL);
/* unregister class request handlers for each interface*/
usb_register_custom_req_handler(NULL);
/* unregister status callback */
usb_register_status_callback(NULL);
/* Reset USB controller */
usb_dc_reset();
return 0;
}
int usb_enable(struct usb_cfg_data *config)
{
int ret;
u32_t i;
struct usb_dc_ep_cfg_data ep0_cfg;
if (usb_dev.enabled == true) {
return 0;
}
/* Enable VBUS if needed */
ret = usb_vbus_set(true);
if (ret < 0) {
return ret;
}
usb_register_status_callback(forward_status_cb);
usb_dc_set_status_callback(forward_status_cb);
ret = usb_dc_attach();
if (ret < 0) {
return ret;
}
/* Configure control EP */
ep0_cfg.ep_mps = USB_MAX_CTRL_MPS;
ep0_cfg.ep_type = USB_DC_EP_CONTROL;
ep0_cfg.ep_addr = USB_CONTROL_OUT_EP0;
ret = usb_dc_ep_configure(&ep0_cfg);
if (ret < 0) {
return ret;
}
ep0_cfg.ep_addr = USB_CONTROL_IN_EP0;
ret = usb_dc_ep_configure(&ep0_cfg);
if (ret < 0) {
return ret;
}
/* Register endpoint 0 handlers*/
ret = usb_dc_ep_set_callback(USB_CONTROL_OUT_EP0,
usb_handle_control_transfer);
if (ret < 0) {
return ret;
}
ret = usb_dc_ep_set_callback(USB_CONTROL_IN_EP0,
usb_handle_control_transfer);
if (ret < 0) {
return ret;
}
/* Register endpoint handlers*/
for (i = 0U; i < config->num_endpoints; i++) {
ret = usb_dc_ep_set_callback(config->endpoint[i].ep_addr,
config->endpoint[i].ep_cb);
if (ret < 0) {
return ret;
}
}
/* Init transfer slots */
for (i = 0U; i < MAX_NUM_TRANSFERS; i++) {
k_work_init(&usb_dev.transfer[i].work, usb_transfer_work);
k_sem_init(&usb_dev.transfer[i].sem, 1, 1);
}
/* Enable control EP */
ret = usb_dc_ep_enable(USB_CONTROL_OUT_EP0);
if (ret < 0) {
return ret;
}
ret = usb_dc_ep_enable(USB_CONTROL_IN_EP0);
if (ret < 0) {
return ret;
}
usb_dev.enabled = true;
return 0;
}
int usb_disable(void)
{
int ret;
if (usb_dev.enabled != true) {
/*Already disabled*/
return 0;
}
ret = usb_dc_detach();
if (ret < 0) {
return ret;
}
/* Disable VBUS if needed */
usb_vbus_set(false);
usb_dev.enabled = false;
return 0;
}
int usb_write(u8_t ep, const u8_t *data, u32_t data_len, u32_t *bytes_ret)
{
while (true) {
int ret = usb_dc_ep_write(ep, data, data_len, bytes_ret);
if (ret != -EAGAIN) {
return ret;
}
k_yield();
}
}
int usb_read(u8_t ep, u8_t *data, u32_t max_data_len, u32_t *ret_bytes)
{
return usb_dc_ep_read(ep, data, max_data_len, ret_bytes);
}
int usb_ep_set_stall(u8_t ep)
{
return usb_dc_ep_set_stall(ep);
}
int usb_ep_clear_stall(u8_t ep)
{
return usb_dc_ep_clear_stall(ep);
}
int usb_ep_read_wait(u8_t ep, u8_t *data, u32_t max_data_len, u32_t *ret_bytes)
{
return usb_dc_ep_read_wait(ep, data, max_data_len, ret_bytes);
}
int usb_ep_read_continue(u8_t ep)
{
return usb_dc_ep_read_continue(ep);
}
/* Transfer management */
static struct usb_transfer_data *usb_ep_get_transfer(u8_t ep)
{
for (int i = 0; i < ARRAY_SIZE(usb_dev.transfer); i++) {
if (usb_dev.transfer[i].ep == ep) {
return &usb_dev.transfer[i];
}
}
return NULL;
}
bool usb_transfer_is_busy(u8_t ep)
{
struct usb_transfer_data *trans = usb_ep_get_transfer(ep);
if (trans && trans->status == -EBUSY) {
return true;
}
return false;
}
static void usb_transfer_work(struct k_work *item)
{
struct usb_transfer_data *trans;
int ret = 0;
u32_t bytes;
u8_t ep;
trans = CONTAINER_OF(item, struct usb_transfer_data, work);
ep = trans->ep;
if (trans->status != -EBUSY) {
/* transfer cancelled or already completed */
goto done;
}
if (trans->flags & USB_TRANS_WRITE) {
if (!trans->bsize) {
if (!(trans->flags & USB_TRANS_NO_ZLP)) {
usb_write(ep, NULL, 0, NULL);
}
trans->status = 0;
goto done;
}
ret = usb_write(ep, trans->buffer, trans->bsize, &bytes);
if (ret) {
LOG_ERR("Transfer error %d", ret);
/* transfer error */
trans->status = -EINVAL;
goto done;
}
trans->buffer += bytes;
trans->bsize -= bytes;
trans->tsize += bytes;
} else {
ret = usb_dc_ep_read_wait(ep, trans->buffer, trans->bsize,
&bytes);
if (ret) {
/* transfer error */
trans->status = -EINVAL;
goto done;
}
trans->buffer += bytes;
trans->bsize -= bytes;
trans->tsize += bytes;
/* ZLP, short-pkt or buffer full */
if (!bytes || (bytes % usb_dc_ep_mps(ep)) || !trans->bsize) {
/* transfer complete */
trans->status = 0;
goto done;
}
/* we expect mote data, clear NAK */
usb_dc_ep_read_continue(ep);
}
done:
if (trans->status != -EBUSY && trans->cb) { /* Transfer complete */
usb_transfer_callback cb = trans->cb;
int tsize = trans->tsize;
void *priv = trans->priv;
if (k_is_in_isr()) {
/* reschedule completion in thread context */
k_work_submit(&trans->work);
return;
}
LOG_DBG("transfer done, ep=%02x, status=%d, size=%u",
trans->ep, trans->status, trans->tsize);
trans->cb = NULL;
k_sem_give(&trans->sem);
/* Transfer completion callback */
if (trans->status != -ECANCELED) {
cb(ep, tsize, priv);
}
}
}
void usb_transfer_ep_callback(u8_t ep, enum usb_dc_ep_cb_status_code status)
{
struct usb_transfer_data *trans = usb_ep_get_transfer(ep);
if (status != USB_DC_EP_DATA_IN && status != USB_DC_EP_DATA_OUT) {
return;
}
if (!trans) {
if (status == USB_DC_EP_DATA_OUT) {
u32_t bytes;
/* In the unlikely case we receive data while no
* transfer is ongoing, we have to consume the data
* anyway. This is to prevent stucking reception on
* other endpoints (e.g dw driver has only one rx-fifo,
* so drain it).
*/
do {
u8_t data;
usb_dc_ep_read_wait(ep, &data, 1, &bytes);
} while (bytes);
LOG_ERR("RX data lost, no transfer");
}
return;
}
if (!k_is_in_isr() || (status == USB_DC_EP_DATA_OUT)) {
/* If we are not in IRQ context, no need to defer work */
/* Read (out) needs to be done from ep_callback */
usb_transfer_work(&trans->work);
} else {
k_work_submit(&trans->work);
}
}
int usb_transfer(u8_t ep, u8_t *data, size_t dlen, unsigned int flags,
usb_transfer_callback cb, void *cb_data)
{
struct usb_transfer_data *trans = NULL;
int i, key, ret = 0;
LOG_DBG("transfer start, ep=%02x, data=%p, dlen=%d", ep, data, dlen);
key = irq_lock();
for (i = 0; i < MAX_NUM_TRANSFERS; i++) {
if (!k_sem_take(&usb_dev.transfer[i].sem, K_NO_WAIT)) {
trans = &usb_dev.transfer[i];
break;
}
}
if (!trans) {
LOG_ERR("no transfer slot available");
ret = -ENOMEM;
goto done;
}
if (trans->status == -EBUSY) {
/* A transfer is already ongoing and not completed */
k_sem_give(&trans->sem);
ret = -EBUSY;
goto done;
}
/* Configure new transfer */
trans->ep = ep;
trans->buffer = data;
trans->bsize = dlen;
trans->tsize = 0;
trans->cb = cb;
trans->flags = flags;
trans->priv = cb_data;
trans->status = -EBUSY;
if (usb_dc_ep_mps(ep) && (dlen % usb_dc_ep_mps(ep))) {
/* no need to send ZLP since last packet will be a short one */
trans->flags |= USB_TRANS_NO_ZLP;
}
if (flags & USB_TRANS_WRITE) {
/* start writing first chunk */
k_work_submit(&trans->work);
} else {
/* ready to read, clear NAK */
ret = usb_dc_ep_read_continue(ep);
}
done:
irq_unlock(key);
return ret;
}
void usb_cancel_transfer(u8_t ep)
{
struct usb_transfer_data *trans;
unsigned int key;
key = irq_lock();
trans = usb_ep_get_transfer(ep);
if (!trans) {
goto done;
}
if (trans->status != -EBUSY) {
goto done;
}
trans->status = -ECANCELED;
k_work_submit(&trans->work);
done:
irq_unlock(key);
}
void usb_cancel_transfers(void)
{
for (int i = 0; i < ARRAY_SIZE(usb_dev.transfer); i++) {
struct usb_transfer_data *trans = &usb_dev.transfer[i];
unsigned int key;
key = irq_lock();
if (trans->status == -EBUSY) {
trans->status = -ECANCELED;
k_work_submit(&trans->work);
LOG_DBG("Cancel transfer");
}
irq_unlock(key);
}
}
struct usb_transfer_sync_priv {
int tsize;
struct k_sem sem;
};
static void usb_transfer_sync_cb(u8_t ep, int size, void *priv)
{
struct usb_transfer_sync_priv *pdata = priv;
pdata->tsize = size;
k_sem_give(&pdata->sem);
}
int usb_transfer_sync(u8_t ep, u8_t *data, size_t dlen, unsigned int flags)
{
struct usb_transfer_sync_priv pdata;
int ret;
k_sem_init(&pdata.sem, 0, 1);
ret = usb_transfer(ep, data, dlen, flags, usb_transfer_sync_cb, &pdata);
if (ret) {
return ret;
}
/* Semaphore will be released by the transfer completion callback */
k_sem_take(&pdata.sem, K_FOREVER);
return pdata.tsize;
}
int usb_wakeup_request(void)
{
if (IS_ENABLED(CONFIG_USB_DEVICE_REMOTE_WAKEUP)) {
if (usb_dev.remote_wakeup) {
return usb_dc_wakeup_request();
}
return -EACCES;
} else {
return -ENOTSUP;
}
}
#ifdef CONFIG_USB_COMPOSITE_DEVICE
static u8_t iface_data_buf[CONFIG_USB_COMPOSITE_BUFFER_SIZE];
/*
* The functions class_handler(), custom_handler() and vendor_handler()
* go through the interfaces one after the other and compare the
* bInterfaceNumber with the wIndex and and then call the appropriate
* callback of the USB function.
* Note, a USB function can have more than one interface and the
* request does not have to be directed to the first interface (unlikely).
* These functions can be simplified and moved to usb_handle_request()
* when legacy initialization throgh the usb_set_config() and
* usb_enable() is no longer needed.
*/
static int class_handler(struct usb_setup_packet *pSetup,
s32_t *len, u8_t **data)
{
size_t size = (__usb_data_end - __usb_data_start);
const struct usb_if_descriptor *if_descr;
struct usb_interface_cfg_data *iface;
LOG_DBG("bRequest 0x%x, wIndex 0x%x", pSetup->bRequest,
sys_le16_to_cpu(pSetup->wIndex));
for (size_t i = 0; i < size; i++) {
iface = &(__usb_data_start[i].interface);
if_descr = __usb_data_start[i].interface_descriptor;
if ((iface->class_handler) &&
(if_descr->bInterfaceNumber ==
sys_le16_to_cpu(pSetup->wIndex))) {
return iface->class_handler(pSetup, len, data);
}
}
return -ENOTSUP;
}
static int custom_handler(struct usb_setup_packet *pSetup,
s32_t *len, u8_t **data)
{
size_t size = (__usb_data_end - __usb_data_start);
const struct usb_if_descriptor *if_descr;
struct usb_interface_cfg_data *iface;
LOG_DBG("bRequest 0x%x, wIndex 0x%x", pSetup->bRequest,
sys_le16_to_cpu(pSetup->wIndex));
for (size_t i = 0; i < size; i++) {
iface = &(__usb_data_start[i].interface);
if_descr = __usb_data_start[i].interface_descriptor;
if ((iface->custom_handler) &&
(if_descr->bInterfaceNumber ==
sys_le16_to_cpu(pSetup->wIndex))) {
return iface->custom_handler(pSetup, len, data);
}
}
return -ENOTSUP;
}
static int vendor_handler(struct usb_setup_packet *pSetup,
s32_t *len, u8_t **data)
{
size_t size = (__usb_data_end - __usb_data_start);
struct usb_interface_cfg_data *iface;
LOG_DBG("bRequest 0x%x, wIndex 0x%x", pSetup->bRequest,
sys_le16_to_cpu(pSetup->wIndex));
if (usb_os_desc_enabled()) {
if (!usb_handle_os_desc_feature(pSetup, len, data)) {
return 0;
}
}
for (size_t i = 0; i < size; i++) {
iface = &(__usb_data_start[i].interface);
if (iface->vendor_handler) {
if (!iface->vendor_handler(pSetup, len, data)) {
return 0;
}
}
}
return -ENOTSUP;
}
static int composite_setup_ep_cb(void)
{
size_t size = (__usb_data_end - __usb_data_start);
struct usb_ep_cfg_data *ep_data;
for (size_t i = 0; i < size; i++) {
ep_data = __usb_data_start[i].endpoint;
for (u8_t n = 0; n < __usb_data_start[i].num_endpoints; n++) {
LOG_DBG("set cb, ep: 0x%x", ep_data[n].ep_addr);
if (usb_dc_ep_set_callback(ep_data[n].ep_addr,
ep_data[n].ep_cb)) {
return -1;
}
}
}
return 0;
}
/*
* This function configures the USB device stack based on USB descriptor and
* usb_cfg_data.
*/
static int usb_composite_init(struct device *dev)
{
int ret;
struct usb_dc_ep_cfg_data ep0_cfg;
u8_t *device_descriptor;
if (usb_dev.enabled == true) {
return 0;
}
/* register device descriptor */
device_descriptor = usb_get_device_descriptor();
if (!device_descriptor) {
LOG_ERR("Failed to configure USB device stack");
return -1;
}
usb_register_descriptors(device_descriptor);
/* register standard request handler */
usb_register_request_handler(REQTYPE_TYPE_STANDARD,
&(usb_handle_standard_request),
usb_dev.std_req_data);
/* register class request handlers for each interface*/
usb_register_request_handler(REQTYPE_TYPE_CLASS,
class_handler,
iface_data_buf);
/* register vendor request handlers */
usb_register_request_handler(REQTYPE_TYPE_VENDOR,
vendor_handler,
iface_data_buf);
/* register class request handlers for each interface*/
usb_register_custom_req_handler(custom_handler);
usb_register_status_callback(forward_status_cb);
usb_dc_set_status_callback(forward_status_cb);
/* Enable VBUS if needed */
ret = usb_vbus_set(true);
if (ret < 0) {
return ret;
}
ret = usb_dc_attach();
if (ret < 0) {
return ret;
}
/* Configure control EP */
ep0_cfg.ep_mps = USB_MAX_CTRL_MPS;
ep0_cfg.ep_type = USB_DC_EP_CONTROL;
ep0_cfg.ep_addr = USB_CONTROL_OUT_EP0;
ret = usb_dc_ep_configure(&ep0_cfg);
if (ret < 0) {
return ret;
}
ep0_cfg.ep_addr = USB_CONTROL_IN_EP0;
ret = usb_dc_ep_configure(&ep0_cfg);
if (ret < 0) {
return ret;
}
/*register endpoint 0 handlers*/
ret = usb_dc_ep_set_callback(USB_CONTROL_OUT_EP0,
usb_handle_control_transfer);
if (ret < 0) {
return ret;
}
ret = usb_dc_ep_set_callback(USB_CONTROL_IN_EP0,
usb_handle_control_transfer);
if (ret < 0) {
return ret;
}
if (composite_setup_ep_cb()) {
return -1;
}
/* init transfer slots */
for (int i = 0; i < MAX_NUM_TRANSFERS; i++) {
k_work_init(&usb_dev.transfer[i].work, usb_transfer_work);
k_sem_init(&usb_dev.transfer[i].sem, 1, 1);
}
/* enable control EP */
ret = usb_dc_ep_enable(USB_CONTROL_OUT_EP0);
if (ret < 0) {
return ret;
}
ret = usb_dc_ep_enable(USB_CONTROL_IN_EP0);
if (ret < 0) {
return ret;
}
usb_dev.enabled = true;
return 0;
}
SYS_INIT(usb_composite_init, APPLICATION, CONFIG_APPLICATION_INIT_PRIORITY);
#endif /* CONFIG_USB_COMPOSITE_DEVICE */