mirror of
https://github.com/zephyrproject-rtos/zephyr
synced 2025-08-18 15:35:23 +00:00
Quark SE Lakemont core has a hardware bug where the LOAPIC does not properly notify the IOAPIC to clear the IRR bit for level- triggered interrupts. This patch introduces a workaround where the vector ID of the in-service interrupt is manually written to the IOAPIC_EOI register, resulting in the bit being cleared. Unfortunately, in the context where EOI happens it's very difficult to identify which IRQ line is being serviced, so this is done unconditionally for all interrupts vectors whether they are registered in the IOAPIC RTE table or not. Change-Id: I639cd258dec4f50934e17eadbb821e6a7112e636 Signed-off-by: Andrew Boie <andrew.p.boie@intel.com> Signed-off-by: Anas Nashif <anas.nashif@intel.com>
320 lines
9.4 KiB
C
320 lines
9.4 KiB
C
/*
|
|
* Copyright (c) 1997-1998, 2000-2002, 2004, 2006-2008, 2011-2015 Wind River
|
|
* Systems, Inc.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @brief Intel IO APIC/xAPIC driver
|
|
*
|
|
* This module is a driver for the IO APIC/xAPIC (Advanced Programmable
|
|
* Interrupt Controller) for P6 (PentiumPro, II, III) family processors
|
|
* and P7 (Pentium4) family processors. The IO APIC/xAPIC is included
|
|
* in the Intel's system chip set, such as ICH2. Software intervention
|
|
* may be required to enable the IO APIC/xAPIC in some chip sets.
|
|
* The 8259A interrupt controller is intended for use in a uni-processor
|
|
* system, IO APIC can be used in either a uni-processor or multi-processor
|
|
* system. The IO APIC handles interrupts very differently than the 8259A.
|
|
* Briefly, these differences are:
|
|
* - Method of Interrupt Transmission. The IO APIC transmits interrupts
|
|
* through a 3-wire bus and interrupts are handled without the need for
|
|
* the processor to run an interrupt acknowledge cycle.
|
|
* - Interrupt Priority. The priority of interrupts in the IO APIC is
|
|
* independent of the interrupt number. For example, interrupt 10 can
|
|
* be given a higher priority than interrupt 3.
|
|
* - More Interrupts. The IO APIC supports a total of 24 interrupts.
|
|
*
|
|
* The IO APIC unit consists of a set of interrupt input signals, a 24-entry
|
|
* by 64-bit Interrupt Redirection Table, programmable registers, and a message
|
|
* unit for sending and receiving APIC messages over the APIC bus or the
|
|
* Front-Side (system) bus. IO devices inject interrupts into the system by
|
|
* asserting one of the interrupt lines to the IO APIC. The IO APIC selects the
|
|
* corresponding entry in the Redirection Table and uses the information in that
|
|
* entry to format an interrupt request message. Each entry in the Redirection
|
|
* Table can be individually programmed to indicate edge/level sensitive interrupt
|
|
* signals, the interrupt vector and priority, the destination processor, and how
|
|
* the processor is selected (statically and dynamically). The information in
|
|
* the table is used to transmit a message to other APIC units (via the APIC bus
|
|
* or the Front-Side (system) bus). IO APIC is used in the Symmetric IO Mode.
|
|
* The base address of IO APIC is determined in loapic_init() and stored in the
|
|
* global variable ioApicBase and ioApicData.
|
|
* The lower 32 bit value of the redirection table entries for IRQ 0
|
|
* to 15 are edge triggered positive high, and for IRQ 16 to 23 are level
|
|
* triggered positive low.
|
|
*
|
|
* This implementation doesn't support multiple IO APICs.
|
|
*
|
|
* INCLUDE FILES: ioapic.h loapic.h
|
|
*
|
|
*/
|
|
|
|
#include <nanokernel.h>
|
|
#include <arch/cpu.h>
|
|
|
|
#include "board.h"
|
|
|
|
#include <toolchain.h>
|
|
#include <sections.h>
|
|
#include <init.h>
|
|
|
|
#include <drivers/ioapic.h> /* public API declarations */
|
|
#include <drivers/loapic.h> /* public API declarations and registers */
|
|
#include "ioapic_priv.h"
|
|
|
|
static uint32_t __IoApicGet(int32_t offset);
|
|
static void __IoApicSet(int32_t offset, uint32_t value);
|
|
static void ioApicRedSetHi(unsigned int irq, uint32_t upper32);
|
|
static void ioApicRedSetLo(unsigned int irq, uint32_t lower32);
|
|
static uint32_t ioApicRedGetLo(unsigned int irq);
|
|
static void _IoApicRedUpdateLo(unsigned int irq, uint32_t value,
|
|
uint32_t mask);
|
|
|
|
/*
|
|
* The functions irq_enable() and irq_disable() are implemented in the
|
|
* interrupt controller driver due to the IRQ virtualization imposed by
|
|
* the x86 architecture.
|
|
*/
|
|
|
|
/**
|
|
*
|
|
* @brief Initialize the IO APIC or xAPIC
|
|
*
|
|
* This routine initializes the IO APIC or xAPIC.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
int _ioapic_init(struct device *unused)
|
|
{
|
|
ARG_UNUSED(unused);
|
|
int32_t ix; /* redirection table index */
|
|
uint32_t rteValue; /* value to copy into redirection table entry */
|
|
|
|
/*
|
|
* The platform must set the Kconfig option IOAPIC_NUM_RTES to indicate
|
|
* the number of redirection table entries supported by the IOAPIC.
|
|
*
|
|
* Note: The number of actual IRQs supported by the IOAPIC can be
|
|
* determined at runtime by computing:
|
|
*
|
|
* ((__IoApicGet(IOAPIC_VERS) & IOAPIC_MRE_MASK) >> 16) + 1
|
|
*/
|
|
|
|
/*
|
|
* Initialize the redirection table entries with default settings;
|
|
* actual interrupt vectors are specified during irq_connect().
|
|
*
|
|
* A future enhancement should make this initialization "table driven":
|
|
* use data provided by the platform to specify the initial state
|
|
*/
|
|
|
|
rteValue = IOAPIC_EDGE | IOAPIC_HIGH | IOAPIC_FIXED | IOAPIC_INT_MASK |
|
|
IOAPIC_PHYSICAL | 0 /* dummy vector */;
|
|
|
|
for (ix = 0; ix < CONFIG_IOAPIC_NUM_RTES; ix++) {
|
|
ioApicRedSetHi(ix, 0);
|
|
ioApicRedSetLo(ix, rteValue);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Enable a specified APIC interrupt input line
|
|
*
|
|
* This routine enables a specified APIC interrupt input line.
|
|
* @param irq IRQ number to enable
|
|
*
|
|
* @return N/A
|
|
*/
|
|
void _ioapic_irq_enable(unsigned int irq)
|
|
{
|
|
_IoApicRedUpdateLo(irq, 0, IOAPIC_INT_MASK);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Disable a specified APIC interrupt input line
|
|
*
|
|
* This routine disables a specified APIC interrupt input line.
|
|
* @param irq IRQ number to disable
|
|
*
|
|
* @return N/A
|
|
*/
|
|
void _ioapic_irq_disable(unsigned int irq)
|
|
{
|
|
_IoApicRedUpdateLo(irq, IOAPIC_INT_MASK, IOAPIC_INT_MASK);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Programs the interrupt redirection table
|
|
*
|
|
* This routine sets up the redirection table entry for the specified IRQ
|
|
* @param irq Virtualized IRQ
|
|
* @param vector Vector number
|
|
* @param flags Interrupt flags
|
|
*
|
|
* @return N/A
|
|
*/
|
|
void _ioapic_irq_set(unsigned int irq, unsigned int vector, uint32_t flags)
|
|
{
|
|
uint32_t rteValue; /* value to copy into redirection table entry */
|
|
|
|
rteValue = IOAPIC_FIXED | IOAPIC_INT_MASK | IOAPIC_PHYSICAL |
|
|
(vector & IOAPIC_VEC_MASK) | flags;
|
|
ioApicRedSetHi(irq, 0);
|
|
ioApicRedSetLo(irq, rteValue);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Program interrupt vector for specified irq
|
|
*
|
|
* The routine writes the interrupt vector in the Interrupt Redirection
|
|
* Table for specified irq number
|
|
*
|
|
* @param irq Interrupt number
|
|
* @param vector Vector number
|
|
* @return N/A
|
|
*/
|
|
void _ioapic_int_vec_set(unsigned int irq, unsigned int vector)
|
|
{
|
|
_IoApicRedUpdateLo(irq, vector, IOAPIC_VEC_MASK);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Read a 32 bit IO APIC register
|
|
*
|
|
* This routine reads the specified IO APIC register using indirect addressing.
|
|
* @param offset Register offset (8 bits)
|
|
*
|
|
* @return register value
|
|
*/
|
|
static uint32_t __IoApicGet(int32_t offset)
|
|
{
|
|
uint32_t value; /* value */
|
|
int key; /* interrupt lock level */
|
|
|
|
/* lock interrupts to ensure indirect addressing works "atomically" */
|
|
|
|
key = irq_lock();
|
|
|
|
*((volatile char *)
|
|
(CONFIG_IOAPIC_BASE_ADDRESS + IOAPIC_IND)) = (char)offset;
|
|
value = *((volatile uint32_t *)(CONFIG_IOAPIC_BASE_ADDRESS + IOAPIC_DATA));
|
|
|
|
irq_unlock(key);
|
|
|
|
return value;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Write a 32 bit IO APIC register
|
|
*
|
|
* This routine writes the specified IO APIC register using indirect addressing.
|
|
*
|
|
* @param offset Register offset (8 bits)
|
|
* @param value Value to set the register
|
|
* @return N/A
|
|
*/
|
|
static void __IoApicSet(int32_t offset, uint32_t value)
|
|
{
|
|
int key; /* interrupt lock level */
|
|
|
|
/* lock interrupts to ensure indirect addressing works "atomically" */
|
|
|
|
key = irq_lock();
|
|
|
|
*(volatile char *)(CONFIG_IOAPIC_BASE_ADDRESS + IOAPIC_IND) = (char)offset;
|
|
*((volatile uint32_t *)(CONFIG_IOAPIC_BASE_ADDRESS + IOAPIC_DATA)) = value;
|
|
|
|
irq_unlock(key);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Get low 32 bits of Redirection Table entry
|
|
*
|
|
* This routine reads the low-order 32 bits of a Redirection Table entry.
|
|
*
|
|
* @param irq INTIN number
|
|
* @return 32 low-order bits
|
|
*/
|
|
static uint32_t ioApicRedGetLo(unsigned int irq)
|
|
{
|
|
int32_t offset = IOAPIC_REDTBL + (irq << 1); /* register offset */
|
|
|
|
return __IoApicGet(offset);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Set low 32 bits of Redirection Table entry
|
|
*
|
|
* This routine writes the low-order 32 bits of a Redirection Table entry.
|
|
*
|
|
* @param irq INTIN number
|
|
* @param lower32 Value to be written
|
|
* @return N/A
|
|
*/
|
|
static void ioApicRedSetLo(unsigned int irq, uint32_t lower32)
|
|
{
|
|
int32_t offset = IOAPIC_REDTBL + (irq << 1); /* register offset */
|
|
|
|
__IoApicSet(offset, lower32);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Set high 32 bits of Redirection Table entry
|
|
*
|
|
* This routine writes the high-order 32 bits of a Redirection Table entry.
|
|
*
|
|
* @param irq INTIN number
|
|
* @param upper32 Value to be written
|
|
* @return N/A
|
|
*/
|
|
static void ioApicRedSetHi(unsigned int irq, uint32_t upper32)
|
|
{
|
|
int32_t offset = IOAPIC_REDTBL + (irq << 1) + 1; /* register offset */
|
|
|
|
__IoApicSet(offset, upper32);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Modify low 32 bits of Redirection Table entry
|
|
*
|
|
* This routine modifies selected portions of the low-order 32 bits of a
|
|
* Redirection Table entry, as indicated by the associate bit mask.
|
|
*
|
|
* @param irq INTIN number
|
|
* @param value Value to be written
|
|
* @param mask Mask of bits to be modified
|
|
* @return N/A
|
|
*/
|
|
static void _IoApicRedUpdateLo(unsigned int irq,
|
|
uint32_t value,
|
|
uint32_t mask)
|
|
{
|
|
ioApicRedSetLo(irq, (ioApicRedGetLo(irq) & ~mask) | (value & mask));
|
|
}
|
|
|
|
DECLARE_DEVICE_INIT_CONFIG(ioapic_0, "", _ioapic_init, NULL);
|
|
SYS_DEFINE_DEVICE(ioapic_0, NULL, PRIMARY,
|
|
CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
|