mirror of
https://github.com/zephyrproject-rtos/zephyr
synced 2025-09-06 06:21:56 +00:00
Simplified some documentation, removing inconsistencies and making it easier to understand by separating PM infrastructure areas and soc specific components that implement the hooks. Removed the DEVICE_SUSPEND_ONLY policy as it is redundant and causes high complexity in the flow. It is also not practical to use it because it was meant to be used without doing CPU or SOC low power state operations. This means it would do device PM operations in the ISR of the system timer used by the scheduler. This can disrupt the scheduler time. Added a check of a flag around the notification sent from the ISR of the wake event and created APIs to set/clear it. This will allow disabling the notification when not needed from _sys_soc_suspend(). Jira: ZEP-972 Change-Id: Id7aa7d2683384eabed518d4efac446ecc84c3498 Signed-off-by: Ramesh Thomas <ramesh.thomas@intel.com>
456 lines
11 KiB
C
456 lines
11 KiB
C
/*
|
|
* Copyright (c) 1997-2010, 2012-2014 Wind River Systems, Inc.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @brief Microkernel idle logic
|
|
*
|
|
* Microkernel idle logic. Different forms of idling are performed by the idle
|
|
* task, depending on how the kernel is configured.
|
|
*/
|
|
|
|
#include <micro_private.h>
|
|
#include <nano_private.h>
|
|
#include <arch/cpu.h>
|
|
#include <toolchain.h>
|
|
#include <sections.h>
|
|
#include <microkernel.h>
|
|
#include <misc/util.h>
|
|
#include <drivers/system_timer.h>
|
|
|
|
#if defined(CONFIG_WORKLOAD_MONITOR)
|
|
|
|
static unsigned int _k_workload_slice = 0x0;
|
|
static unsigned int _k_workload_ticks = 0x0;
|
|
static unsigned int _k_workload_ref_time = 0x0;
|
|
static unsigned int _k_workload_t0 = 0x0;
|
|
static unsigned int _k_workload_t1 = 0x0;
|
|
static volatile unsigned int _k_workload_n0 = 0x0;
|
|
static volatile unsigned int _k_workload_n1 = 0x0;
|
|
static volatile unsigned int _k_workload_i = 0x0;
|
|
static volatile unsigned int _k_workload_i0 = 0x0;
|
|
static volatile unsigned int _k_workload_delta = 0x0;
|
|
static volatile unsigned int _k_workload_start_time = 0x0;
|
|
static volatile unsigned int _k_workload_end_time = 0x0;
|
|
|
|
#ifdef WL_SCALE
|
|
static extern uint32_t _k_workload_scale;
|
|
#endif
|
|
|
|
/**
|
|
*
|
|
* @brief Shared code between workload calibration and monitoring
|
|
*
|
|
* Perform idle task "dummy work".
|
|
*
|
|
* This routine increments _k_workload_i and checks it against _k_workload_n1.
|
|
* _k_workload_n1 is updated by the system tick handler, and both are kept
|
|
* in close synchronization.
|
|
*
|
|
* @return N/A
|
|
*
|
|
*/
|
|
static void workload_loop(void)
|
|
{
|
|
volatile int x = 87654321;
|
|
volatile int y = 4;
|
|
|
|
/* loop never terminates, except during calibration phase */
|
|
|
|
while (++_k_workload_i != _k_workload_n1) {
|
|
unsigned int s_iCountDummyProc = 0;
|
|
|
|
while (64 != s_iCountDummyProc++) { /* 64 == 2^6 */
|
|
x >>= y;
|
|
x <<= y;
|
|
y++;
|
|
x >>= y;
|
|
x <<= y;
|
|
y--;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Calibrate the workload monitoring subsystem
|
|
*
|
|
* Measures the time required to do a fixed amount of "dummy work", and
|
|
* sets default values for the workload measuring period.
|
|
*
|
|
* @return N/A
|
|
*
|
|
*/
|
|
void _k_workload_monitor_calibrate(void)
|
|
{
|
|
_k_workload_n0 = _k_workload_i = 0;
|
|
_k_workload_n1 = 1000;
|
|
|
|
_k_workload_t0 = sys_cycle_get_32();
|
|
workload_loop();
|
|
_k_workload_t1 = sys_cycle_get_32();
|
|
|
|
_k_workload_delta = _k_workload_t1 - _k_workload_t0;
|
|
_k_workload_i0 = _k_workload_i;
|
|
#ifdef WL_SCALE
|
|
_k_workload_ref_time =
|
|
(_k_workload_t1 - _k_workload_t0) >> (_k_workload_scale);
|
|
#else
|
|
_k_workload_ref_time = (_k_workload_t1 - _k_workload_t0) >> (4 + 6);
|
|
#endif
|
|
|
|
_k_workload_slice = 100;
|
|
_k_workload_ticks = 100;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Workload monitor tick handler
|
|
*
|
|
* If workload monitor is configured this routine updates the global variables
|
|
* it uses to record the passage of time.
|
|
*
|
|
* @return N/A
|
|
*
|
|
*/
|
|
void _k_workload_monitor_update(void)
|
|
{
|
|
if (--_k_workload_ticks == 0) {
|
|
_k_workload_t0 = _k_workload_t1;
|
|
_k_workload_t1 = sys_cycle_get_32();
|
|
_k_workload_n0 = _k_workload_n1;
|
|
_k_workload_n1 = _k_workload_i - 1;
|
|
_k_workload_ticks = _k_workload_slice;
|
|
}
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Workload monitor "start idling" handler
|
|
*
|
|
* Records time when idle task was selected for execution by the microkernel.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
void _k_workload_monitor_idle_start(void)
|
|
{
|
|
_k_workload_start_time = sys_cycle_get_32();
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Workload monitor "end idling" handler
|
|
*
|
|
* Records time when idle task was no longer selected for execution by the
|
|
* microkernel, and updates amount of time spent idling.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
void _k_workload_monitor_idle_end(void)
|
|
{
|
|
_k_workload_end_time = sys_cycle_get_32();
|
|
_k_workload_i += (_k_workload_i0 *
|
|
(_k_workload_end_time - _k_workload_start_time)) / _k_workload_delta;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Process request to read the processor workload
|
|
*
|
|
* Computes workload, or uses 0 if workload monitoring is not configured.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
void _k_workload_get(struct k_args *P)
|
|
{
|
|
unsigned int k, t;
|
|
signed int iret;
|
|
|
|
k = (_k_workload_i - _k_workload_n0) * _k_workload_ref_time;
|
|
#ifdef WL_SCALE
|
|
t = (sys_cycle_get_32() - _k_workload_t0) >> (_k_workload_scale);
|
|
#else
|
|
t = (sys_cycle_get_32() - _k_workload_t0) >> (4 + 6);
|
|
#endif
|
|
|
|
iret = MSEC_PER_SEC - k / t;
|
|
|
|
/*
|
|
* Due to calibration at startup, <iret> could be slightly negative.
|
|
* Ensure a negative value is never returned.
|
|
*/
|
|
|
|
if (iret < 0) {
|
|
iret = 0;
|
|
}
|
|
|
|
P->args.u1.rval = iret;
|
|
}
|
|
#else
|
|
void _k_workload_get(struct k_args *P)
|
|
{
|
|
P->args.u1.rval = 0;
|
|
}
|
|
|
|
#endif /* CONFIG_WORKLOAD_MONITOR */
|
|
|
|
|
|
int task_workload_get(void)
|
|
{
|
|
struct k_args A;
|
|
|
|
A.Comm = _K_SVC_WORKLOAD_GET;
|
|
KERNEL_ENTRY(&A);
|
|
return A.args.u1.rval;
|
|
}
|
|
|
|
|
|
void sys_workload_time_slice_set(int32_t t)
|
|
{
|
|
#ifdef CONFIG_WORKLOAD_MONITOR
|
|
if (t < 10) {
|
|
t = 10;
|
|
}
|
|
if (t > 1000) {
|
|
t = 1000;
|
|
}
|
|
_k_workload_slice = t;
|
|
#else
|
|
ARG_UNUSED(t);
|
|
#endif
|
|
}
|
|
|
|
unsigned char _sys_power_save_flag = 1;
|
|
|
|
#if defined(CONFIG_SYS_POWER_MANAGEMENT)
|
|
|
|
#include <nanokernel.h>
|
|
#include <microkernel/base_api.h>
|
|
#if (defined(CONFIG_SYS_POWER_LOW_POWER_STATE) || \
|
|
defined(CONFIG_SYS_POWER_DEEP_SLEEP) || \
|
|
defined(CONFIG_DEVICE_POWER_MANAGEMENT))
|
|
#include <power.h>
|
|
/*
|
|
* Used to allow _sys_soc_suspend() implementation to control notification
|
|
* of the wake event that caused exit from low power state
|
|
*/
|
|
unsigned char _sys_soc_notify_wake_event;
|
|
#endif
|
|
#if defined(CONFIG_TICKLESS_IDLE)
|
|
#include <drivers/system_timer.h>
|
|
#endif
|
|
|
|
extern void nano_cpu_set_idle(int32_t ticks);
|
|
|
|
#if defined(CONFIG_TICKLESS_IDLE)
|
|
/*
|
|
* Idle time must be this value or higher for timer to go into tickless idle
|
|
* state.
|
|
*/
|
|
int32_t _sys_idle_threshold_ticks = CONFIG_TICKLESS_IDLE_THRESH;
|
|
#endif /* CONFIG_TICKLESS_IDLE */
|
|
|
|
/**
|
|
*
|
|
* @brief Power management policy when kernel begins idling
|
|
*
|
|
* This routine implements the power management policy based on the time
|
|
* until the timer expires, in system ticks.
|
|
* Routine is invoked from the idle task with interrupts disabled
|
|
*
|
|
* @return N/A
|
|
*/
|
|
void _sys_power_save_idle(int32_t ticks)
|
|
{
|
|
#if defined(CONFIG_TICKLESS_IDLE)
|
|
if ((ticks == TICKS_UNLIMITED) || ticks >= _sys_idle_threshold_ticks) {
|
|
/*
|
|
* Stop generating system timer interrupts until it's time for
|
|
* the next scheduled microkernel timer to expire.
|
|
*/
|
|
|
|
_timer_idle_enter(ticks);
|
|
}
|
|
#endif /* CONFIG_TICKLESS_IDLE */
|
|
|
|
nano_cpu_set_idle(ticks);
|
|
#if (defined(CONFIG_SYS_POWER_LOW_POWER_STATE) || \
|
|
defined(CONFIG_SYS_POWER_DEEP_SLEEP) || \
|
|
defined(CONFIG_DEVICE_POWER_MANAGEMENT))
|
|
|
|
/* This assignment will be controlled by Kconfig flag in future */
|
|
_sys_soc_notify_wake_event = 1;
|
|
|
|
/*
|
|
* Call the suspend hook function of the soc interface to allow
|
|
* entry into a low power state. The function returns
|
|
* SYS_PM_NOT_HANDLED if low power state was not entered, in which
|
|
* case, kernel does normal idle processing.
|
|
*
|
|
* This function is entered with interrupts disabled. If a low power
|
|
* state was entered, then the hook function should enable inerrupts
|
|
* before exiting. This is because the kernel does not do its own idle
|
|
* processing in those cases i.e. skips nano_cpu_idle(). The kernel's
|
|
* idle processing re-enables interrupts which is essential for
|
|
* the kernel's scheduling logic.
|
|
*/
|
|
if (_sys_soc_suspend(ticks) == SYS_PM_NOT_HANDLED) {
|
|
_sys_soc_notify_wake_event = 0;
|
|
nano_cpu_idle();
|
|
}
|
|
#else
|
|
nano_cpu_idle();
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Power management policy when kernel stops idling
|
|
*
|
|
* This routine is invoked when the kernel leaves the idle state.
|
|
* Routine can be modified to wake up other devices.
|
|
* The routine is invoked from interrupt thread, with interrupts disabled.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
void _sys_power_save_idle_exit(int32_t ticks)
|
|
{
|
|
#if (defined(CONFIG_SYS_POWER_LOW_POWER_STATE) || \
|
|
defined(CONFIG_SYS_POWER_DEEP_SLEEP) || \
|
|
defined(CONFIG_DEVICE_POWER_MANAGEMENT))
|
|
/* Some CPU low power states require notification at the ISR
|
|
* to allow any operations that needs to be done before kernel
|
|
* switches task or processes nested interrupts. This can be
|
|
* disabled by calling _sys_soc_disable_wake_event_notification().
|
|
* Alternatively it can be simply ignored if not required.
|
|
*/
|
|
if (_sys_soc_notify_wake_event) {
|
|
_sys_soc_resume();
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_TICKLESS_IDLE
|
|
if ((ticks == TICKS_UNLIMITED) || ticks >= _sys_idle_threshold_ticks) {
|
|
/* Resume normal periodic system timer interrupts */
|
|
|
|
_timer_idle_exit();
|
|
}
|
|
#else
|
|
ARG_UNUSED(ticks);
|
|
#endif /* CONFIG_TICKLESS_IDLE */
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Obtain number of ticks until next timer expires
|
|
*
|
|
* Must be called with interrupts locked to prevent the timer queues from
|
|
* changing.
|
|
*
|
|
* @return Number of ticks until next timer expires.
|
|
*
|
|
*/
|
|
static inline int32_t _get_next_timer_expiry(void)
|
|
{
|
|
uint32_t closest_deadline = (uint32_t)TICKS_UNLIMITED;
|
|
|
|
if (_k_timer_list_head) {
|
|
closest_deadline = _k_timer_list_head->duration;
|
|
}
|
|
|
|
return (int32_t)min(closest_deadline, _nano_get_earliest_deadline());
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
*
|
|
* @brief Power saving when idle
|
|
*
|
|
* If _sys_power_save_flag is non-zero, this routine keeps the system in a low
|
|
* power state whenever the kernel is idle. If it is zero, this routine will
|
|
* fall through and _k_kernel_idle() will try the next idling mechanism.
|
|
*
|
|
* @return N/A
|
|
*
|
|
*/
|
|
static void _power_save(void)
|
|
{
|
|
if (_sys_power_save_flag) {
|
|
for (;;) {
|
|
irq_lock();
|
|
#ifdef CONFIG_SYS_POWER_MANAGEMENT
|
|
_sys_power_save_idle(_get_next_timer_expiry());
|
|
#else
|
|
/*
|
|
* nano_cpu_idle() is invoked here directly only if APM
|
|
* is disabled. Otherwise the microkernel decides
|
|
* either to invoke it or to implement advanced idle
|
|
* functionality
|
|
*/
|
|
|
|
nano_cpu_idle();
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Code analyzers may complain that _power_save() uses an
|
|
* infinite loop unless we indicate that this is intentional
|
|
*/
|
|
|
|
CODE_UNREACHABLE;
|
|
}
|
|
}
|
|
|
|
/* Specify what work to do when idle task is "busy waiting" */
|
|
|
|
#ifdef CONFIG_WORKLOAD_MONITOR
|
|
#define DO_IDLE_WORK() workload_loop()
|
|
#else
|
|
#define DO_IDLE_WORK() do { /* do nothing */ } while (0)
|
|
#endif
|
|
|
|
/**
|
|
*
|
|
* @brief Microkernel idle task
|
|
*
|
|
* If power save is on, we sleep; if power save is off, we "busy wait".
|
|
*
|
|
* @return N/A
|
|
*
|
|
*/
|
|
int _k_kernel_idle(void)
|
|
{
|
|
_power_save(); /* never returns if power saving is enabled */
|
|
|
|
#ifdef CONFIG_BOOT_TIME_MEASUREMENT
|
|
/* record timestamp when idling begins */
|
|
|
|
extern uint64_t __idle_tsc;
|
|
|
|
__idle_tsc = _NanoTscRead();
|
|
#endif
|
|
|
|
for (;;) {
|
|
DO_IDLE_WORK();
|
|
}
|
|
|
|
/*
|
|
* Code analyzers may complain that _k_kernel_idle() uses an infinite
|
|
* loop unless we indicate that this is intentional
|
|
*/
|
|
|
|
CODE_UNREACHABLE;
|
|
}
|