zephyr/subsys/disk/disk_access_sdhc.c
Carlos Stuart 75f77db432 include: misc: util.h: Rename min/max to MIN/MAX
There are issues using lowercase min and max macros when compiling a C++
application with a third-party toolchain such as GNU ARM Embedded when
using some STL headers i.e. <chrono>.

This is because there are actual C++ functions called min and max
defined in some of the STL headers and these macros interfere with them.
By changing the macros to UPPERCASE, which is consistent with almost all
other pre-processor macros this naming conflict is avoided.

All files that use these macros have been updated.

Signed-off-by: Carlos Stuart <carlosstuart1970@gmail.com>
2019-02-14 22:16:03 -05:00

1034 lines
21 KiB
C

/*
* Copyright (c) 2017 Google LLC.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <logging/log.h>
LOG_MODULE_REGISTER(sdhc, CONFIG_DISK_LOG_LEVEL);
#include <disk_access.h>
#include <gpio.h>
#include <misc/byteorder.h>
#include <spi.h>
#include <crc.h>
#define SDHC_SECTOR_SIZE 512
#define SDHC_CMD_SIZE 6
#define SDHC_CMD_BODY_SIZE (SDHC_CMD_SIZE - 1)
#define SDHC_CRC16_SIZE 2
/* Command IDs */
#define SDHC_GO_IDLE_STATE 0
#define SDHC_SEND_IF_COND 8
#define SDHC_SEND_CSD 9
#define SDHC_SEND_CID 10
#define SDHC_STOP_TRANSMISSION 12
#define SDHC_SEND_STATUS 13
#define SDHC_READ_SINGLE_BLOCK 17
#define SDHC_READ_MULTIPLE_BLOCK 18
#define SDHC_WRITE_BLOCK 24
#define SDHC_WRITE_MULTIPLE_BLOCK 25
#define SDHC_APP_CMD 55
#define SDHC_READ_OCR 58
#define SDHC_CRC_ON_OFF 59
#define SDHC_SEND_OP_COND 41
/* Command flags */
#define SDHC_START 0x80
#define SDHC_TX 0x40
/* Fields in various card registers */
#define SDHC_HCS (1 << 30)
#define SDHC_CCS (1 << 30)
#define SDHC_VHS_MASK (0x0F << 8)
#define SDHC_VHS_3V3 (1 << 8)
#define SDHC_CHECK 0xAA
#define SDHC_CSD_SIZE 16
#define SDHC_CSD_V2 1
/* R1 response status */
#define SDHC_R1_IDLE 0x01
#define SDHC_R1_ERASE_RESET 0x02
#define SDHC_R1_ILLEGAL_COMMAND 0x04
#define SDHC_R1_COM_CRC 0x08
#define SDHC_R1_ERASE_SEQ 0x10
#define SDHC_R1_ADDRESS 0x20
#define SDHC_R1_PARAMETER 0x40
/* Data block tokens */
#define SDHC_TOKEN_SINGLE 0xFE
#define SDHC_TOKEN_MULTI_WRITE 0xFC
#define SDHC_TOKEN_STOP_TRAN 0xFD
/* Data block responses */
#define SDHC_RESPONSE_ACCEPTED 0x05
#define SDHC_RESPONSE_CRC_ERR 0x0B
#define SDHC_RESPONSE_WRITE_ERR 0x0E
/* Clock speed used during initialisation */
#define SDHC_INITIAL_SPEED 400000
/* Clock speed used after initialisation */
#define SDHC_SPEED 4000000
#define SDHC_MIN_TRIES 20
#define SDHC_RETRY_DELAY K_MSEC(20)
/* Time to wait for the card to initialise */
#define SDHC_INIT_TIMEOUT K_MSEC(5000)
/* Time to wait for the card to respond or come ready */
#define SDHC_READY_TIMEOUT K_MSEC(500)
struct sdhc_data {
struct device *spi;
struct spi_config cfg;
struct device *cs;
u32_t pin;
u32_t sector_count;
u8_t status;
int trace_dir;
};
struct sdhc_retry {
u32_t end;
s16_t tries;
u16_t sleep;
};
struct sdhc_flag_map {
u8_t mask;
u8_t err;
};
DEVICE_DECLARE(sdhc_0);
/* The SD protocol requires sending ones while reading but Zephyr
* defaults to writing zeros.
*/
static const u8_t sdhc_ones[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
};
BUILD_ASSERT(sizeof(sdhc_ones) % SDHC_CSD_SIZE == 0);
BUILD_ASSERT(SDHC_SECTOR_SIZE % sizeof(sdhc_ones) == 0);
/* Maps R1 response flags to error codes */
static const struct sdhc_flag_map sdhc_r1_flags[] = {
{SDHC_R1_PARAMETER, EFAULT}, {SDHC_R1_ADDRESS, EFAULT},
{SDHC_R1_ILLEGAL_COMMAND, EINVAL}, {SDHC_R1_COM_CRC, EILSEQ},
{SDHC_R1_ERASE_SEQ, EIO}, {SDHC_R1_ERASE_RESET, EIO},
{SDHC_R1_IDLE, ECONNRESET}, {0, 0},
};
/* Maps disk status flags to error codes */
static const struct sdhc_flag_map sdhc_disk_status_flags[] = {
{DISK_STATUS_UNINIT, ENODEV},
{DISK_STATUS_NOMEDIA, ENOENT},
{DISK_STATUS_WR_PROTECT, EROFS},
{0, 0},
};
/* Maps data block flags to error codes */
static const struct sdhc_flag_map sdhc_data_response_flags[] = {
{SDHC_RESPONSE_WRITE_ERR, EIO},
{SDHC_RESPONSE_CRC_ERR, EILSEQ},
{SDHC_RESPONSE_ACCEPTED, 0},
/* Unrecognised value */
{0, EPROTO},
};
/* Traces card traffic for LOG_LEVEL_DBG */
static int sdhc_trace(struct sdhc_data *data, int dir, int err,
const u8_t *buf, int len)
{
#if LOG_LEVEL >= LOG_LEVEL_DBG
if (err != 0) {
printk("(err=%d)", err);
data->trace_dir = 0;
}
if (dir != data->trace_dir) {
data->trace_dir = dir;
printk("\n");
if (dir == 1) {
printk(">>");
} else if (dir == -1) {
printk("<<");
}
}
for (; len != 0; len--) {
printk(" %x", *buf++);
}
#endif
return err;
}
/* Returns true if an error code is retryable at the disk layer */
static bool sdhc_is_retryable(int err)
{
switch (err) {
case 0:
return false;
case -EILSEQ:
case -EIO:
case -ETIMEDOUT:
return true;
default:
return false;
}
}
/* Maps a flag based error code into a Zephyr errno */
static int sdhc_map_flags(const struct sdhc_flag_map *map, int flags)
{
if (flags < 0) {
return flags;
}
for (; map->mask != 0; map++) {
if ((flags & map->mask) == map->mask) {
return -map->err;
}
}
return -map->err;
}
/* Converts disk status into an error code */
static int sdhc_map_disk_status(int status)
{
return sdhc_map_flags(sdhc_disk_status_flags, status);
}
/* Converts the R1 response flags into an error code */
static int sdhc_map_r1_status(int status)
{
return sdhc_map_flags(sdhc_r1_flags, status);
}
/* Converts an eary stage idle mode R1 code into an error code */
static int sdhc_map_r1_idle_status(int status)
{
if (status < 0) {
return status;
}
if (status == SDHC_R1_IDLE) {
return 0;
}
return sdhc_map_r1_status(status);
}
/* Converts the data block response flags into an error code */
static int sdhc_map_data_status(int status)
{
return sdhc_map_flags(sdhc_data_response_flags, status);
}
/* Initialises a retry helper */
static void sdhc_retry_init(struct sdhc_retry *retry, u32_t timeout,
u16_t sleep)
{
retry->end = k_uptime_get_32() + timeout;
retry->tries = 0;
retry->sleep = sleep;
}
/* Called at the end of a retry loop. Returns if the minimum try
* count and timeout has passed. Delays/yields on retry.
*/
static bool sdhc_retry_ok(struct sdhc_retry *retry)
{
s32_t remain = retry->end - k_uptime_get_32();
if (retry->tries < SDHC_MIN_TRIES) {
retry->tries++;
if (retry->sleep != 0) {
k_sleep(retry->sleep);
}
return true;
}
if (remain >= 0) {
if (retry->sleep > 0) {
k_sleep(retry->sleep);
} else {
k_yield();
}
return true;
}
return false;
}
/* Asserts or deasserts chip select */
static void sdhc_set_cs(struct sdhc_data *data, int value)
{
gpio_pin_write(data->cs, data->pin, value);
}
/* Receives a fixed number of bytes */
static int sdhc_rx_bytes(struct sdhc_data *data, u8_t *buf, int len)
{
struct spi_buf tx_bufs[] = {
{
.buf = (u8_t *)sdhc_ones,
.len = len
}
};
const struct spi_buf_set tx = {
.buffers = tx_bufs,
.count = 1,
};
struct spi_buf rx_bufs[] = {
{
.buf = buf,
.len = len
}
};
const struct spi_buf_set rx = {
.buffers = rx_bufs,
.count = 1,
};
return sdhc_trace(data, -1,
spi_transceive(data->spi, &data->cfg, &tx, &rx),
buf, len);
}
/* Receives and returns a single byte */
static int sdhc_rx_u8(struct sdhc_data *data)
{
u8_t buf[1];
int err = sdhc_rx_bytes(data, buf, sizeof(buf));
if (err != 0) {
return err;
}
return buf[0];
}
/* Transmits a block of bytes */
static int sdhc_tx(struct sdhc_data *data, const u8_t *buf, int len)
{
struct spi_buf spi_bufs[] = {
{
.buf = (u8_t *)buf,
.len = len
}
};
const struct spi_buf_set tx = {
.buffers = spi_bufs,
.count = 1
};
return sdhc_trace(data, 1, spi_write(data->spi, &data->cfg, &tx), buf,
len);
}
/* Transmits the command and payload */
static int sdhc_tx_cmd(struct sdhc_data *data, u8_t cmd, u32_t payload)
{
u8_t buf[SDHC_CMD_SIZE];
LOG_DBG("cmd%d payload=%u", cmd, payload);
sdhc_trace(data, 0, 0, NULL, 0);
/* Encode the command */
buf[0] = SDHC_TX | (cmd & ~SDHC_START);
sys_put_be32(payload, &buf[1]);
buf[SDHC_CMD_BODY_SIZE] = crc7_be(0, buf, SDHC_CMD_BODY_SIZE);
return sdhc_tx(data, buf, sizeof(buf));
}
/* Reads until anything but `discard` is received */
static int sdhc_skip(struct sdhc_data *data, int discard)
{
int err;
struct sdhc_retry retry;
sdhc_retry_init(&retry, SDHC_READY_TIMEOUT, 0);
do {
err = sdhc_rx_u8(data);
if (err != discard) {
return err;
}
} while (sdhc_retry_ok(&retry));
LOG_WRN("Timeout while waiting for !%d", discard);
return -ETIMEDOUT;
}
/* Reads until the first byte in a response is received */
static int sdhc_skip_until_start(struct sdhc_data *data)
{
struct sdhc_retry retry;
int status;
sdhc_retry_init(&retry, SDHC_READY_TIMEOUT, 0);
do {
status = sdhc_rx_u8(data);
if (status < 0) {
return status;
}
if ((status & SDHC_START) == 0) {
return status;
}
} while (sdhc_retry_ok(&retry));
return -ETIMEDOUT;
}
/* Reads until the bus goes high */
static int sdhc_skip_until_ready(struct sdhc_data *data)
{
struct sdhc_retry retry;
int status;
sdhc_retry_init(&retry, SDHC_READY_TIMEOUT, 0);
do {
status = sdhc_rx_u8(data);
if (status < 0) {
return status;
}
if (status == 0) {
/* Card is still busy */
continue;
}
if (status == 0xFF) {
return 0;
}
/* Got something else. Some cards release MISO part
* way through the transfer. Read another and see if
* MISO went high.
*/
status = sdhc_rx_u8(data);
if (status < 0) {
return status;
}
if (status == 0xFF) {
return 0;
}
return -EPROTO;
} while (sdhc_retry_ok(&retry));
return -ETIMEDOUT;
}
/* Sends a command and returns the received R1 status code */
static int sdhc_cmd_r1_raw(struct sdhc_data *data, u8_t cmd, u32_t payload)
{
int err;
err = sdhc_tx_cmd(data, cmd, payload);
if (err != 0) {
return err;
}
err = sdhc_skip_until_start(data);
/* Ensure there's a idle byte between commands */
sdhc_rx_u8(data);
return err;
}
/* Sends a command and returns the mapped error code */
static int sdhc_cmd_r1(struct sdhc_data *data, u8_t cmd, uint32_t payload)
{
return sdhc_map_r1_status(sdhc_cmd_r1_raw(data, cmd, payload));
}
/* Sends a command in idle mode returns the mapped error code */
static int sdhc_cmd_r1_idle(struct sdhc_data *data, u8_t cmd,
uint32_t payload)
{
return sdhc_map_r1_idle_status(sdhc_cmd_r1_raw(data, cmd, payload));
}
/* Sends a command and returns the received multi-byte R2 status code */
static int sdhc_cmd_r2(struct sdhc_data *data, u8_t cmd, uint32_t payload)
{
int err;
int r1;
int r2;
err = sdhc_tx_cmd(data, cmd, payload);
if (err != 0) {
return err;
}
r1 = sdhc_map_r1_status(sdhc_skip_until_start(data));
/* Always read the rest of the reply */
r2 = sdhc_rx_u8(data);
/* Ensure there's a idle byte between commands */
sdhc_rx_u8(data);
if (r1 < 0) {
return r1;
}
return r2;
}
/* Sends a command and returns the received multi-byte status code */
static int sdhc_cmd_r37_raw(struct sdhc_data *data, u8_t cmd, u32_t payload,
u32_t *reply)
{
int err;
int status;
u8_t buf[sizeof(*reply)];
err = sdhc_tx_cmd(data, cmd, payload);
if (err != 0) {
return err;
}
status = sdhc_skip_until_start(data);
/* Always read the rest of the reply */
err = sdhc_rx_bytes(data, buf, sizeof(buf));
*reply = sys_get_be32(buf);
/* Ensure there's a idle byte between commands */
sdhc_rx_u8(data);
if (err != 0) {
return err;
}
return status;
}
/* Sends a command in idle mode returns the mapped error code */
static int sdhc_cmd_r7_idle(struct sdhc_data *data, u8_t cmd, u32_t payload,
u32_t *reply)
{
return sdhc_map_r1_idle_status(
sdhc_cmd_r37_raw(data, cmd, payload, reply));
}
/* Sends a command and returns the received multi-byte R3 error code */
static int sdhc_cmd_r3(struct sdhc_data *data, u8_t cmd, uint32_t payload,
u32_t *reply)
{
return sdhc_map_r1_status(
sdhc_cmd_r37_raw(data, cmd, payload, reply));
}
/* Receives a SDHC data block */
static int sdhc_rx_block(struct sdhc_data *data, u8_t *buf, int len)
{
int err;
int token;
int i;
/* Note the one extra byte to ensure there's an idle byte
* between commands.
*/
u8_t crc[SDHC_CRC16_SIZE + 1];
token = sdhc_skip(data, 0xFF);
if (token < 0) {
return token;
}
if (token != SDHC_TOKEN_SINGLE) {
/* No start token */
return -EIO;
}
/* Read the data in batches */
for (i = 0; i < len; i += sizeof(sdhc_ones)) {
int remain = MIN(sizeof(sdhc_ones), len - i);
struct spi_buf tx_bufs[] = {
{
.buf = (u8_t *)sdhc_ones,
.len = remain
}
};
const struct spi_buf_set tx = {
.buffers = tx_bufs,
.count = 1,
};
struct spi_buf rx_bufs[] = {
{
.buf = &buf[i],
.len = remain
}
};
const struct spi_buf_set rx = {
.buffers = rx_bufs,
.count = 1,
};
err = sdhc_trace(data, -1, spi_transceive(data->spi, &data->cfg,
&tx, &rx),
&buf[i], remain);
if (err != 0) {
return err;
}
}
err = sdhc_rx_bytes(data, crc, sizeof(crc));
if (err != 0) {
return err;
}
if (sys_get_be16(crc) != crc16_itu_t(0, buf, len)) {
/* Bad CRC */
return -EILSEQ;
}
return 0;
}
/* Transmits a SDHC data block */
static int sdhc_tx_block(struct sdhc_data *data, u8_t *send, int len)
{
u8_t buf[SDHC_CRC16_SIZE];
int err;
/* Start the block */
buf[0] = SDHC_TOKEN_SINGLE;
err = sdhc_tx(data, buf, 1);
if (err != 0) {
return err;
}
/* Write the payload */
err = sdhc_tx(data, send, len);
if (err != 0) {
return err;
}
/* Build and write the trailing CRC */
sys_put_be16(crc16_itu_t(0, send, len), buf);
err = sdhc_tx(data, buf, sizeof(buf));
if (err != 0) {
return err;
}
return sdhc_map_data_status(sdhc_rx_u8(data));
}
static int sdhc_recover(struct sdhc_data *data)
{
/* TODO(nzmichaelh): implement */
return sdhc_cmd_r1(data, SDHC_SEND_STATUS, 0);
}
/* Attempts to return the card to idle mode */
static int sdhc_go_idle(struct sdhc_data *data)
{
sdhc_set_cs(data, 1);
/* Write the initial >= 74 clocks */
sdhc_tx(data, sdhc_ones, 10);
sdhc_set_cs(data, 0);
return sdhc_cmd_r1_idle(data, SDHC_GO_IDLE_STATE, 0);
}
/* Checks the supported host volatage and basic protocol */
static int sdhc_check_card(struct sdhc_data *data)
{
u32_t cond;
int err;
/* Check that the current voltage is supported */
err = sdhc_cmd_r7_idle(data, SDHC_SEND_IF_COND,
SDHC_VHS_3V3 | SDHC_CHECK, &cond);
if (err != 0) {
return err;
}
if ((cond & 0xFF) != SDHC_CHECK) {
/* Card returned a different check pattern */
return -ENOENT;
}
if ((cond & SDHC_VHS_MASK) != SDHC_VHS_3V3) {
/* Card doesn't support this voltage */
return -ENOTSUP;
}
return 0;
}
/* Detect and initialise the card */
static int sdhc_detect(struct sdhc_data *data)
{
int err;
u32_t ocr;
struct sdhc_retry retry;
u8_t structure;
u32_t csize;
u8_t buf[SDHC_CSD_SIZE];
data->cfg.frequency = SDHC_INITIAL_SPEED;
data->status = DISK_STATUS_UNINIT;
sdhc_retry_init(&retry, SDHC_INIT_TIMEOUT, SDHC_RETRY_DELAY);
/* Synchronise with the card by sending it to idle */
do {
err = sdhc_go_idle(data);
if (err == 0) {
err = sdhc_check_card(data);
if (err == 0) {
break;
}
}
if (!sdhc_retry_ok(&retry)) {
return -ENOENT;
}
} while (true);
/* Enable CRC mode */
err = sdhc_cmd_r1_idle(data, SDHC_CRC_ON_OFF, 1);
if (err != 0) {
return err;
}
/* Wait for the card to leave idle state */
do {
sdhc_cmd_r1_raw(data, SDHC_APP_CMD, 0);
err = sdhc_cmd_r1(data, SDHC_SEND_OP_COND, SDHC_HCS);
if (err == 0) {
break;
}
} while (sdhc_retry_ok(&retry));
if (err != 0) {
/* Card never exited idle */
return -ETIMEDOUT;
}
/* Read OCR and confirm this is a SDHC card */
err = sdhc_cmd_r3(data, SDHC_READ_OCR, 0, &ocr);
if (err != 0) {
return err;
}
if ((ocr & SDHC_CCS) == 0) {
/* A 'SDSC' card */
return -ENOTSUP;
}
/* Read the CSD */
err = sdhc_cmd_r1(data, SDHC_SEND_CSD, 0);
if (err != 0) {
return err;
}
err = sdhc_rx_block(data, buf, sizeof(buf));
if (err != 0) {
return err;
}
/* Bits 126..127 are the structure version */
structure = (buf[0] >> 6);
if (structure != SDHC_CSD_V2) {
/* Unsupported CSD format */
return -ENOTSUP;
}
/* Bits 48..69 are the capacity of the card in 512 KiB units, minus 1.
*/
csize = sys_get_be32(&buf[6]) & ((1 << 22) - 1);
if (csize < 4112) {
/* Invalid capacity according to section 5.3.3 */
return -ENOTSUP;
}
data->sector_count = (csize + 1) * (512 * 1024 / SDHC_SECTOR_SIZE);
LOG_INF("Found a ~%u MiB SDHC card.",
data->sector_count / (1024 * 1024 / SDHC_SECTOR_SIZE));
/* Read the CID */
err = sdhc_cmd_r1(data, SDHC_SEND_CID, 0);
if (err != 0) {
return err;
}
err = sdhc_rx_block(data, buf, sizeof(buf));
if (err != 0) {
return err;
}
LOG_INF("Manufacturer ID=%d OEM='%c%c' Name='%c%c%c%c%c' "
"Revision=0x%x Serial=0x%x",
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
buf[7], buf[8], sys_get_be32(&buf[9]));
/* Initilisation complete */
data->cfg.frequency = SDHC_SPEED;
data->status = DISK_STATUS_OK;
return 0;
}
static int sdhc_read(struct sdhc_data *data, u8_t *buf, u32_t sector,
u32_t count)
{
int err;
err = sdhc_map_disk_status(data->status);
if (err != 0) {
return err;
}
sdhc_set_cs(data, 0);
/* Send the start read command */
err = sdhc_cmd_r1(data, SDHC_READ_MULTIPLE_BLOCK, sector);
if (err != 0) {
goto error;
}
/* Read the sectors */
for (; count != 0; count--) {
err = sdhc_rx_block(data, buf, SDHC_SECTOR_SIZE);
if (err != 0) {
goto error;
}
buf += SDHC_SECTOR_SIZE;
}
/* Ignore the error as STOP_TRANSMISSION always returns 0x7F */
sdhc_cmd_r1(data, SDHC_STOP_TRANSMISSION, 0);
/* Wait until the card becomes ready */
err = sdhc_skip_until_ready(data);
error:
sdhc_set_cs(data, 1);
return err;
}
static int sdhc_write(struct sdhc_data *data, const u8_t *buf, u32_t sector,
u32_t count)
{
int err;
err = sdhc_map_disk_status(data->status);
if (err != 0) {
return err;
}
sdhc_set_cs(data, 0);
/* Write the blocks one-by-one */
for (; count != 0; count--) {
err = sdhc_cmd_r1(data, SDHC_WRITE_BLOCK, sector);
if (err < 0) {
goto error;
}
err = sdhc_tx_block(data, (u8_t *)buf, SDHC_SECTOR_SIZE);
if (err != 0) {
goto error;
}
/* Wait for the card to finish programming */
err = sdhc_skip_until_ready(data);
if (err != 0) {
goto error;
}
err = sdhc_cmd_r2(data, SDHC_SEND_STATUS, 0);
if (err != 0) {
goto error;
}
buf += SDHC_SECTOR_SIZE;
sector++;
}
err = 0;
error:
sdhc_set_cs(data, 1);
return err;
}
static int disk_sdhc_init(struct device *dev);
static int sdhc_init(struct device *dev)
{
struct sdhc_data *data = dev->driver_data;
data->spi = device_get_binding(DT_ZEPHYR_MMC_SPI_SLOT_0_BUS_NAME);
data->cfg.frequency = SDHC_INITIAL_SPEED;
data->cfg.operation = SPI_WORD_SET(8) | SPI_HOLD_ON_CS;
data->cfg.slave = DT_ZEPHYR_MMC_SPI_SLOT_0_BASE_ADDRESS;
data->cs = device_get_binding(DT_ZEPHYR_MMC_SPI_SLOT_0_CS_GPIO_CONTROLLER);
__ASSERT_NO_MSG(data->cs != NULL);
data->pin = DT_ZEPHYR_MMC_SPI_SLOT_0_CS_GPIO_PIN;
disk_sdhc_init(dev);
return gpio_pin_configure(data->cs, data->pin, GPIO_DIR_OUT);
}
static struct device *sdhc_get_device(void) { return DEVICE_GET(sdhc_0); }
static int disk_sdhc_access_status(struct disk_info *disk)
{
struct device *dev = sdhc_get_device();
struct sdhc_data *data = dev->driver_data;
return data->status;
}
static int disk_sdhc_access_read(struct disk_info *disk, u8_t *buf,
u32_t sector, u32_t count)
{
struct device *dev = sdhc_get_device();
struct sdhc_data *data = dev->driver_data;
int err;
LOG_DBG("sector=%u count=%u", sector, count);
err = sdhc_read(data, buf, sector, count);
if (err != 0 && sdhc_is_retryable(err)) {
sdhc_recover(data);
err = sdhc_read(data, buf, sector, count);
}
return err;
}
static int disk_sdhc_access_write(struct disk_info *disk, const u8_t *buf,
u32_t sector, u32_t count)
{
struct device *dev = sdhc_get_device();
struct sdhc_data *data = dev->driver_data;
int err;
LOG_DBG("sector=%u count=%u", sector, count);
err = sdhc_write(data, buf, sector, count);
if (err != 0 && sdhc_is_retryable(err)) {
sdhc_recover(data);
err = sdhc_write(data, buf, sector, count);
}
return err;
}
static int disk_sdhc_access_ioctl(struct disk_info *disk, u8_t cmd, void *buf)
{
struct device *dev = sdhc_get_device();
struct sdhc_data *data = dev->driver_data;
int err;
err = sdhc_map_disk_status(data->status);
if (err != 0) {
return err;
}
switch (cmd) {
case DISK_IOCTL_CTRL_SYNC:
break;
case DISK_IOCTL_GET_SECTOR_COUNT:
*(u32_t *)buf = data->sector_count;
break;
case DISK_IOCTL_GET_SECTOR_SIZE:
*(u32_t *)buf = SDHC_SECTOR_SIZE;
break;
case DISK_IOCTL_GET_ERASE_BLOCK_SZ:
*(u32_t *)buf = SDHC_SECTOR_SIZE;
break;
default:
return -EINVAL;
}
return 0;
}
static int disk_sdhc_access_init(struct disk_info *disk)
{
struct device *dev = sdhc_get_device();
struct sdhc_data *data = dev->driver_data;
int err;
if (data->status == DISK_STATUS_OK) {
/* Called twice, don't re-init. */
return 0;
}
err = sdhc_detect(data);
sdhc_set_cs(data, 1);
return err;
}
static const struct disk_operations sdhc_disk_ops = {
.init = disk_sdhc_access_init,
.status = disk_sdhc_access_status,
.read = disk_sdhc_access_read,
.write = disk_sdhc_access_write,
.ioctl = disk_sdhc_access_ioctl,
};
static struct disk_info sdhc_disk = {
.name = CONFIG_DISK_SDHC_VOLUME_NAME,
.ops = &sdhc_disk_ops,
};
static int disk_sdhc_init(struct device *dev)
{
struct sdhc_data *data = dev->driver_data;
data->status = DISK_STATUS_UNINIT;
return disk_access_register(&sdhc_disk);
}
static struct sdhc_data sdhc_data_0;
DEVICE_AND_API_INIT(sdhc_0, "sdhc_0", sdhc_init, &sdhc_data_0, NULL,
APPLICATION, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT, NULL);