mirror of
https://github.com/zephyrproject-rtos/zephyr
synced 2025-08-12 16:36:12 +00:00
MISRA-C requires that the if statement has essentially Boolean type. MISRA-C rule 14.4 Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
770 lines
22 KiB
C
770 lines
22 KiB
C
/*
|
|
* Copyright (c) 2014 Wind River Systems, Inc.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @brief Common fault handler for ARM Cortex-M
|
|
*
|
|
* Common fault handler for ARM Cortex-M processors.
|
|
*/
|
|
|
|
#include <toolchain.h>
|
|
#include <linker/sections.h>
|
|
|
|
#include <kernel.h>
|
|
#include <kernel_structs.h>
|
|
#include <inttypes.h>
|
|
#include <exc_handle.h>
|
|
#include <logging/log_ctrl.h>
|
|
|
|
#ifdef CONFIG_PRINTK
|
|
#include <misc/printk.h>
|
|
#define PR_EXC(...) printk(__VA_ARGS__)
|
|
#define STORE_xFAR(reg_var, reg) u32_t reg_var = (u32_t)reg
|
|
#else
|
|
#define PR_EXC(...)
|
|
#define STORE_xFAR(reg_var, reg)
|
|
#endif /* CONFIG_PRINTK */
|
|
|
|
#if (CONFIG_FAULT_DUMP == 2)
|
|
#define PR_FAULT_INFO(...) PR_EXC(__VA_ARGS__)
|
|
#else
|
|
#define PR_FAULT_INFO(...)
|
|
#endif
|
|
|
|
#if defined(CONFIG_ARM_MPU) && defined(CONFIG_CPU_HAS_NXP_MPU)
|
|
#define EMN(edr) (((edr) & SYSMPU_EDR_EMN_MASK) >> SYSMPU_EDR_EMN_SHIFT)
|
|
#define EACD(edr) (((edr) & SYSMPU_EDR_EACD_MASK) >> SYSMPU_EDR_EACD_SHIFT)
|
|
#endif
|
|
|
|
#if defined(CONFIG_ARM_SECURE_FIRMWARE)
|
|
|
|
/* Exception Return (EXC_RETURN) is provided in LR upon exception entry.
|
|
* It is used to perform an exception return and to detect possible state
|
|
* transition upon exception.
|
|
*/
|
|
|
|
/* Prefix. Indicates that this is an EXC_RETURN value.
|
|
* This field reads as 0b11111111.
|
|
*/
|
|
#define EXC_RETURN_INDICATOR_PREFIX (0xFF << 24)
|
|
/* bit[0]: Exception Secure. The security domain the exception was taken to. */
|
|
#define EXC_RETURN_EXCEPTION_SECURE_Pos 0
|
|
#define EXC_RETURN_EXCEPTION_SECURE_Msk \
|
|
(1 << EXC_RETURN_EXCEPTION_SECURE_Pos)
|
|
#define EXC_RETURN_EXCEPTION_SECURE_Non_Secure 0
|
|
#define EXC_RETURN_EXCEPTION_SECURE_Secure EXC_RETURN_EXCEPTION_SECURE_Msk
|
|
/* bit[2]: Stack Pointer selection. */
|
|
#define EXC_RETURN_SPSEL_Pos 2
|
|
#define EXC_RETURN_SPSEL_Msk (1 << EXC_RETURN_SPSEL_Pos)
|
|
#define EXC_RETURN_SPSEL_MAIN 0
|
|
#define EXC_RETURN_SPSEL_PROCESS EXC_RETURN_SPSEL_Msk
|
|
/* bit[3]: Mode. Indicates the Mode that was stacked from. */
|
|
#define EXC_RETURN_MODE_Pos 3
|
|
#define EXC_RETURN_MODE_Msk (1 << EXC_RETURN_MODE_Pos)
|
|
#define EXC_RETURN_MODE_HANDLER 0
|
|
#define EXC_RETURN_MODE_THREAD EXC_RETURN_MODE_Msk
|
|
/* bit[4]: Stack frame type. Indicates whether the stack frame is a standard
|
|
* integer only stack frame or an extended floating-point stack frame.
|
|
*/
|
|
#define EXC_RETURN_STACK_FRAME_TYPE_Pos 4
|
|
#define EXC_RETURN_STACK_FRAME_TYPE_Msk (1 << EXC_RETURN_STACK_FRAME_TYPE_Pos)
|
|
#define EXC_RETURN_STACK_FRAME_TYPE_EXTENDED 0
|
|
#define EXC_RETURN_STACK_FRAME_TYPE_STANDARD EXC_RETURN_STACK_FRAME_TYPE_Msk
|
|
/* bit[5]: Default callee register stacking. Indicates whether the default
|
|
* stacking rules apply, or whether the callee registers are already on the
|
|
* stack.
|
|
*/
|
|
#define EXC_RETURN_CALLEE_STACK_Pos 5
|
|
#define EXC_RETURN_CALLEE_STACK_Msk (1 << EXC_RETURN_CALLEE_STACK_Pos)
|
|
#define EXC_RETURN_CALLEE_STACK_SKIPPED 0
|
|
#define EXC_RETURN_CALLEE_STACK_DEFAULT EXC_RETURN_CALLEE_STACK_Msk
|
|
/* bit[6]: Secure or Non-secure stack. Indicates whether a Secure or
|
|
* Non-secure stack is used to restore stack frame on exception return.
|
|
*/
|
|
#define EXC_RETURN_RETURN_STACK_Pos 6
|
|
#define EXC_RETURN_RETURN_STACK_Msk (1 << EXC_RETURN_RETURN_STACK_Pos)
|
|
#define EXC_RETURN_RETURN_STACK_Non_Secure 0
|
|
#define EXC_RETURN_RETURN_STACK_Secure EXC_RETURN_RETURN_STACK_Msk
|
|
|
|
/* Integrity signature for an ARMv8-M implementation */
|
|
#if defined(CONFIG_ARMV7_M_ARMV8_M_FP)
|
|
#define INTEGRITY_SIGNATURE_STD 0xFEFA125BUL
|
|
#define INTEGRITY_SIGNATURE_EXT 0xFEFA125AUL
|
|
#else
|
|
#define INTEGRITY_SIGNATURE 0xFEFA125BUL
|
|
#endif /* CONFIG_ARMV7_M_ARMV8_M_FP */
|
|
/* Size (in words) of the additional state context that is pushed
|
|
* to the Secure stack during a Non-Secure exception entry.
|
|
*/
|
|
#define ADDITIONAL_STATE_CONTEXT_WORDS 10
|
|
#endif /* CONFIG_ARM_SECURE_FIRMWARE */
|
|
|
|
/**
|
|
*
|
|
* Dump information regarding fault (FAULT_DUMP == 1)
|
|
*
|
|
* Dump information regarding the fault when CONFIG_FAULT_DUMP is set to 1
|
|
* (short form).
|
|
*
|
|
* eg. (precise bus error escalated to hard fault):
|
|
*
|
|
* Fault! EXC #3
|
|
* HARD FAULT: Escalation (see below)!
|
|
* MMFSR: 0x00000000, BFSR: 0x00000082, UFSR: 0x00000000
|
|
* BFAR: 0xff001234
|
|
*
|
|
*
|
|
*
|
|
* Dump information regarding fault (FAULT_DUMP == 2)
|
|
*
|
|
* Dump information regarding the fault when CONFIG_FAULT_DUMP is set to 2
|
|
* (long form), and return the error code for the kernel to identify the fatal
|
|
* error reason.
|
|
*
|
|
* eg. (precise bus error escalated to hard fault):
|
|
*
|
|
* ***** HARD FAULT *****
|
|
* Fault escalation (see below)
|
|
* ***** BUS FAULT *****
|
|
* Precise data bus error
|
|
* Address: 0xff001234
|
|
*
|
|
*/
|
|
|
|
#if (CONFIG_FAULT_DUMP == 1)
|
|
static void _FaultShow(const NANO_ESF *esf, int fault)
|
|
{
|
|
PR_EXC("Fault! EXC #%d\n", fault);
|
|
|
|
#if defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
|
|
PR_EXC("MMFSR: 0x%x, BFSR: 0x%x, UFSR: 0x%x\n",
|
|
SCB_MMFSR, SCB_BFSR, SCB_UFSR);
|
|
#if defined(CONFIG_ARM_SECURE_FIRMWARE)
|
|
PR_EXC("SFSR: 0x%x\n", SAU->SFSR);
|
|
#endif /* CONFIG_ARM_SECURE_FIRMWARE */
|
|
#endif /* CONFIG_ARMV7_M_ARMV8_M_MAINLINE */
|
|
}
|
|
#else
|
|
/* For Dump level 2, detailed information is generated by the
|
|
* fault handling functions for individual fault conditions, so this
|
|
* function is left empty.
|
|
*
|
|
* For Dump level 0, no information needs to be generated.
|
|
*/
|
|
static void _FaultShow(const NANO_ESF *esf, int fault)
|
|
{
|
|
(void)esf;
|
|
(void)fault;
|
|
}
|
|
#endif /* FAULT_DUMP == 1 */
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_EXC_DECLARE(z_arch_user_string_nlen);
|
|
|
|
static const struct z_exc_handle exceptions[] = {
|
|
Z_EXC_HANDLE(z_arch_user_string_nlen)
|
|
};
|
|
#endif
|
|
|
|
/* Perform an assessment whether an MPU fault shall be
|
|
* treated as recoverable.
|
|
*
|
|
* @return 1 if error is recoverable, otherwise return 0.
|
|
*/
|
|
static int _MemoryFaultIsRecoverable(NANO_ESF *esf)
|
|
{
|
|
#ifdef CONFIG_USERSPACE
|
|
for (int i = 0; i < ARRAY_SIZE(exceptions); i++) {
|
|
/* Mask out instruction mode */
|
|
u32_t start = (u32_t)exceptions[i].start & ~0x1;
|
|
u32_t end = (u32_t)exceptions[i].end & ~0x1;
|
|
|
|
if (esf->pc >= start && esf->pc < end) {
|
|
esf->pc = (u32_t)(exceptions[i].fixup);
|
|
return 1;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE)
|
|
/* HardFault is used for all fault conditions on ARMv6-M. */
|
|
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
|
|
|
|
/**
|
|
*
|
|
* @brief Dump MPU fault information
|
|
*
|
|
* See _FaultDump() for example.
|
|
*
|
|
* @return error code to identify the fatal error reason
|
|
*/
|
|
static u32_t _MpuFault(NANO_ESF *esf, int fromHardFault)
|
|
{
|
|
u32_t reason = _NANO_ERR_HW_EXCEPTION;
|
|
|
|
PR_FAULT_INFO("***** MPU FAULT *****\n");
|
|
|
|
if ((SCB->CFSR & SCB_CFSR_MSTKERR_Msk) != 0) {
|
|
PR_FAULT_INFO(" Stacking error\n");
|
|
}
|
|
if ((SCB->CFSR & SCB_CFSR_MUNSTKERR_Msk) != 0) {
|
|
PR_FAULT_INFO(" Unstacking error\n");
|
|
}
|
|
if ((SCB->CFSR & SCB_CFSR_DACCVIOL_Msk) != 0) {
|
|
PR_FAULT_INFO(" Data Access Violation\n");
|
|
/* In a fault handler, to determine the true faulting address:
|
|
* 1. Read and save the MMFAR value.
|
|
* 2. Read the MMARVALID bit in the MMFSR.
|
|
* The MMFAR address is valid only if this bit is 1.
|
|
*
|
|
* Software must follow this sequence because another higher
|
|
* priority exception might change the MMFAR value.
|
|
*/
|
|
u32_t mmfar = SCB->MMFAR;
|
|
|
|
if ((SCB->CFSR & SCB_CFSR_MMARVALID_Msk) != 0) {
|
|
PR_EXC(" MMFAR Address: 0x%x\n", mmfar);
|
|
if (fromHardFault) {
|
|
/* clear SCB_MMAR[VALID] to reset */
|
|
SCB->CFSR &= ~SCB_CFSR_MMARVALID_Msk;
|
|
}
|
|
#if defined(CONFIG_HW_STACK_PROTECTION)
|
|
/* When stack protection is enabled, we need to see
|
|
* if the memory violation error is a stack corruption.
|
|
* For that we investigate the address fail.
|
|
*/
|
|
struct k_thread *thread = _current;
|
|
u32_t guard_start;
|
|
if (thread != NULL) {
|
|
#if defined(CONFIG_USERSPACE)
|
|
guard_start =
|
|
thread->arch.priv_stack_start ?
|
|
(u32_t)thread->arch.priv_stack_start :
|
|
(u32_t)thread->stack_obj;
|
|
#else
|
|
guard_start = thread->stack_info.start;
|
|
#endif
|
|
if (mmfar >= guard_start &&
|
|
mmfar < guard_start +
|
|
MPU_GUARD_ALIGN_AND_SIZE) {
|
|
/* Thread stack corruption */
|
|
reason = _NANO_ERR_STACK_CHK_FAIL;
|
|
}
|
|
}
|
|
#else
|
|
(void)mmfar;
|
|
#endif /* CONFIG_HW_STACK_PROTECTION */
|
|
}
|
|
}
|
|
if ((SCB->CFSR & SCB_CFSR_IACCVIOL_Msk) != 0) {
|
|
PR_FAULT_INFO(" Instruction Access Violation\n");
|
|
}
|
|
#if defined(CONFIG_ARMV7_M_ARMV8_M_FP)
|
|
if ((SCB->CFSR & SCB_CFSR_MLSPERR_Msk) != 0) {
|
|
PR_FAULT_INFO(
|
|
" Floating-point lazy state preservation error\n");
|
|
}
|
|
#endif /* !defined(CONFIG_ARMV7_M_ARMV8_M_FP) */
|
|
|
|
/* Assess whether system shall ignore/recover from this MPU fault. */
|
|
if (_MemoryFaultIsRecoverable(esf)) {
|
|
reason = _NANO_ERR_RECOVERABLE;
|
|
}
|
|
|
|
return reason;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Dump bus fault information
|
|
*
|
|
* See _FaultDump() for example.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
static int _BusFault(NANO_ESF *esf, int fromHardFault)
|
|
{
|
|
PR_FAULT_INFO("***** BUS FAULT *****\n");
|
|
|
|
if (SCB->CFSR & SCB_CFSR_STKERR_Msk) {
|
|
PR_FAULT_INFO(" Stacking error\n");
|
|
} else if (SCB->CFSR & SCB_CFSR_UNSTKERR_Msk) {
|
|
PR_FAULT_INFO(" Unstacking error\n");
|
|
} else if (SCB->CFSR & SCB_CFSR_PRECISERR_Msk) {
|
|
PR_FAULT_INFO(" Precise data bus error\n");
|
|
/* In a fault handler, to determine the true faulting address:
|
|
* 1. Read and save the BFAR value.
|
|
* 2. Read the BFARVALID bit in the BFSR.
|
|
* The BFAR address is valid only if this bit is 1.
|
|
*
|
|
* Software must follow this sequence because another
|
|
* higher priority exception might change the BFAR value.
|
|
*/
|
|
STORE_xFAR(bfar, SCB->BFAR);
|
|
|
|
if ((SCB->CFSR & SCB_CFSR_BFARVALID_Msk) != 0) {
|
|
PR_EXC(" BFAR Address: 0x%x\n", bfar);
|
|
if (fromHardFault) {
|
|
/* clear SCB_CFSR_BFAR[VALID] to reset */
|
|
SCB->CFSR &= ~SCB_CFSR_BFARVALID_Msk;
|
|
}
|
|
}
|
|
/* it's possible to have both a precise and imprecise fault */
|
|
if ((SCB->CFSR & SCB_CFSR_IMPRECISERR_Msk) != 0) {
|
|
PR_FAULT_INFO(" Imprecise data bus error\n");
|
|
}
|
|
} else if (SCB->CFSR & SCB_CFSR_IMPRECISERR_Msk) {
|
|
PR_FAULT_INFO(" Imprecise data bus error\n");
|
|
} else if ((SCB->CFSR & SCB_CFSR_IBUSERR_Msk) != 0) {
|
|
PR_FAULT_INFO(" Instruction bus error\n");
|
|
#if !defined(CONFIG_ARMV7_M_ARMV8_M_FP)
|
|
}
|
|
#else
|
|
} else if (SCB->CFSR & SCB_CFSR_LSPERR_Msk) {
|
|
PR_FAULT_INFO(" Floating-point lazy state preservation error\n");
|
|
}
|
|
#endif /* !defined(CONFIG_ARMV7_M_ARMV8_M_FP) */
|
|
|
|
#if defined(CONFIG_ARM_MPU) && defined(CONFIG_CPU_HAS_NXP_MPU)
|
|
u32_t sperr = SYSMPU->CESR & SYSMPU_CESR_SPERR_MASK;
|
|
u32_t mask = BIT(31);
|
|
int i;
|
|
|
|
if (sperr) {
|
|
for (i = 0; i < SYSMPU_EAR_COUNT; i++, mask >>= 1) {
|
|
if ((sperr & mask) == 0) {
|
|
continue;
|
|
}
|
|
STORE_xFAR(edr, SYSMPU->SP[i].EDR);
|
|
STORE_xFAR(ear, SYSMPU->SP[i].EAR);
|
|
|
|
PR_FAULT_INFO(" NXP MPU error, port %d\n", i);
|
|
PR_FAULT_INFO(" Mode: %s, %s Address: 0x%x\n",
|
|
edr & BIT(2) ? "Supervisor" : "User",
|
|
edr & BIT(1) ? "Data" : "Instruction",
|
|
ear);
|
|
PR_FAULT_INFO(
|
|
" Type: %s, Master: %d, Regions: 0x%x\n",
|
|
edr & BIT(0) ? "Write" : "Read",
|
|
EMN(edr), EACD(edr));
|
|
}
|
|
SYSMPU->CESR &= ~sperr;
|
|
}
|
|
#endif /* defined(CONFIG_ARM_MPU) && defined(CONFIG_CPU_HAS_NXP_MPU) */
|
|
|
|
#if defined(CONFIG_ARMV8_M_MAINLINE)
|
|
/* clear BSFR sticky bits */
|
|
SCB->CFSR |= SCB_CFSR_BUSFAULTSR_Msk;
|
|
#endif /* CONFIG_ARMV8_M_MAINLINE */
|
|
|
|
if (_MemoryFaultIsRecoverable(esf)) {
|
|
return _NANO_ERR_RECOVERABLE;
|
|
}
|
|
|
|
return _NANO_ERR_HW_EXCEPTION;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Dump usage fault information
|
|
*
|
|
* See _FaultDump() for example.
|
|
*
|
|
* @return error code to identify the fatal error reason
|
|
*/
|
|
static u32_t _UsageFault(const NANO_ESF *esf)
|
|
{
|
|
u32_t reason = _NANO_ERR_HW_EXCEPTION;
|
|
|
|
PR_FAULT_INFO("***** USAGE FAULT *****\n");
|
|
|
|
/* bits are sticky: they stack and must be reset */
|
|
if ((SCB->CFSR & SCB_CFSR_DIVBYZERO_Msk) != 0) {
|
|
PR_FAULT_INFO(" Division by zero\n");
|
|
}
|
|
if ((SCB->CFSR & SCB_CFSR_UNALIGNED_Msk) != 0) {
|
|
PR_FAULT_INFO(" Unaligned memory access\n");
|
|
}
|
|
#if defined(CONFIG_ARMV8_M_MAINLINE)
|
|
if ((SCB->CFSR & SCB_CFSR_STKOF_Msk) != 0) {
|
|
PR_FAULT_INFO(" Stack overflow\n");
|
|
#if defined(CONFIG_HW_STACK_PROTECTION)
|
|
/* Stack Overflows are reported as stack
|
|
* corruption errors.
|
|
*/
|
|
reason = _NANO_ERR_STACK_CHK_FAIL;
|
|
#endif /* CONFIG_HW_STACK_PROTECTION */
|
|
}
|
|
#endif /* CONFIG_ARMV8_M_MAINLINE */
|
|
if ((SCB->CFSR & SCB_CFSR_NOCP_Msk) != 0) {
|
|
PR_FAULT_INFO(" No coprocessor instructions\n");
|
|
}
|
|
if ((SCB->CFSR & SCB_CFSR_INVPC_Msk) != 0) {
|
|
PR_FAULT_INFO(" Illegal load of EXC_RETURN into PC\n");
|
|
}
|
|
if ((SCB->CFSR & SCB_CFSR_INVSTATE_Msk) != 0) {
|
|
PR_FAULT_INFO(" Illegal use of the EPSR\n");
|
|
}
|
|
if ((SCB->CFSR & SCB_CFSR_UNDEFINSTR_Msk) != 0) {
|
|
PR_FAULT_INFO(" Attempt to execute undefined instruction\n");
|
|
}
|
|
|
|
/* clear USFR sticky bits */
|
|
SCB->CFSR |= SCB_CFSR_USGFAULTSR_Msk;
|
|
|
|
return reason;
|
|
}
|
|
|
|
#if defined(CONFIG_ARM_SECURE_FIRMWARE)
|
|
/**
|
|
*
|
|
* @brief Dump secure fault information
|
|
*
|
|
* See _FaultDump() for example.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
static void _SecureFault(const NANO_ESF *esf)
|
|
{
|
|
PR_FAULT_INFO("***** SECURE FAULT *****\n");
|
|
|
|
STORE_xFAR(sfar, SAU->SFAR);
|
|
if ((SAU->SFSR & SAU_SFSR_SFARVALID_Msk) != 0) {
|
|
PR_EXC(" Address: 0x%x\n", sfar);
|
|
}
|
|
|
|
/* bits are sticky: they stack and must be reset */
|
|
if ((SAU->SFSR & SAU_SFSR_INVEP_Msk) != 0) {
|
|
PR_FAULT_INFO(" Invalid entry point\n");
|
|
} else if ((SAU->SFSR & SAU_SFSR_INVIS_Msk) != 0) {
|
|
PR_FAULT_INFO(" Invalid integrity signature\n");
|
|
} else if ((SAU->SFSR & SAU_SFSR_INVER_Msk) != 0) {
|
|
PR_FAULT_INFO(" Invalid exception return\n");
|
|
} else if ((SAU->SFSR & SAU_SFSR_AUVIOL_Msk) != 0) {
|
|
PR_FAULT_INFO(" Attribution unit violation\n");
|
|
} else if ((SAU->SFSR & SAU_SFSR_INVTRAN_Msk) != 0) {
|
|
PR_FAULT_INFO(" Invalid transition\n");
|
|
} else if ((SAU->SFSR & SAU_SFSR_LSPERR_Msk) != 0) {
|
|
PR_FAULT_INFO(" Lazy state preservation\n");
|
|
} else if ((SAU->SFSR & SAU_SFSR_LSERR_Msk) != 0) {
|
|
PR_FAULT_INFO(" Lazy state error\n");
|
|
}
|
|
|
|
/* clear SFSR sticky bits */
|
|
SAU->SFSR |= 0xFF;
|
|
}
|
|
#endif /* defined(CONFIG_ARM_SECURE_FIRMWARE) */
|
|
|
|
/**
|
|
*
|
|
* @brief Dump debug monitor exception information
|
|
*
|
|
* See _FaultDump() for example.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
static void _DebugMonitor(const NANO_ESF *esf)
|
|
{
|
|
ARG_UNUSED(esf);
|
|
|
|
PR_FAULT_INFO(
|
|
"***** Debug monitor exception (not implemented) *****\n");
|
|
}
|
|
|
|
#else
|
|
#error Unknown ARM architecture
|
|
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */
|
|
|
|
/**
|
|
*
|
|
* @brief Dump hard fault information
|
|
*
|
|
* See _FaultDump() for example.
|
|
*
|
|
* @return error code to identify the fatal error reason
|
|
*/
|
|
static u32_t _HardFault(NANO_ESF *esf)
|
|
{
|
|
u32_t reason = _NANO_ERR_HW_EXCEPTION;
|
|
|
|
PR_FAULT_INFO("***** HARD FAULT *****\n");
|
|
|
|
#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE)
|
|
if (_MemoryFaultIsRecoverable(esf) != 0) {
|
|
reason = _NANO_ERR_RECOVERABLE;
|
|
}
|
|
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
|
|
if ((SCB->HFSR & SCB_HFSR_VECTTBL_Msk) != 0) {
|
|
PR_EXC(" Bus fault on vector table read\n");
|
|
} else if ((SCB->HFSR & SCB_HFSR_FORCED_Msk) != 0) {
|
|
PR_EXC(" Fault escalation (see below)\n");
|
|
if (SCB_MMFSR != 0) {
|
|
reason = _MpuFault(esf, 1);
|
|
} else if (SCB_BFSR != 0) {
|
|
reason = _BusFault(esf, 1);
|
|
} else if (SCB_UFSR != 0) {
|
|
reason = _UsageFault(esf);
|
|
#if defined(CONFIG_ARM_SECURE_FIRMWARE)
|
|
} else if (SAU->SFSR != 0) {
|
|
_SecureFault(esf);
|
|
#endif /* CONFIG_ARM_SECURE_FIRMWARE */
|
|
}
|
|
}
|
|
#else
|
|
#error Unknown ARM architecture
|
|
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */
|
|
|
|
return reason;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Dump reserved exception information
|
|
*
|
|
* See _FaultDump() for example.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
static void _ReservedException(const NANO_ESF *esf, int fault)
|
|
{
|
|
ARG_UNUSED(esf);
|
|
|
|
PR_FAULT_INFO("***** %s %d) *****\n",
|
|
fault < 16 ? "Reserved Exception (" : "Spurious interrupt (IRQ ",
|
|
fault - 16);
|
|
}
|
|
|
|
/* Handler function for ARM fault conditions. */
|
|
static u32_t _FaultHandle(NANO_ESF *esf, int fault)
|
|
{
|
|
u32_t reason = _NANO_ERR_HW_EXCEPTION;
|
|
|
|
switch (fault) {
|
|
case 3:
|
|
reason = _HardFault(esf);
|
|
break;
|
|
#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE)
|
|
/* HardFault is used for all fault conditions on ARMv6-M. */
|
|
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
|
|
case 4:
|
|
reason = _MpuFault(esf, 0);
|
|
break;
|
|
case 5:
|
|
reason = _BusFault(esf, 0);
|
|
break;
|
|
case 6:
|
|
reason = _UsageFault(esf);
|
|
break;
|
|
#if defined(CONFIG_ARM_SECURE_FIRMWARE)
|
|
case 7:
|
|
_SecureFault(esf);
|
|
break;
|
|
#endif /* CONFIG_ARM_SECURE_FIRMWARE */
|
|
case 12:
|
|
_DebugMonitor(esf);
|
|
break;
|
|
#else
|
|
#error Unknown ARM architecture
|
|
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */
|
|
default:
|
|
_ReservedException(esf, fault);
|
|
break;
|
|
}
|
|
|
|
if (reason != _NANO_ERR_RECOVERABLE) {
|
|
/* Dump generic information about the fault. */
|
|
_FaultShow(esf, fault);
|
|
}
|
|
|
|
return reason;
|
|
}
|
|
|
|
#if defined(CONFIG_ARM_SECURE_FIRMWARE)
|
|
#if (CONFIG_FAULT_DUMP == 2)
|
|
/**
|
|
* @brief Dump the Secure Stack information for an exception that
|
|
* has occurred in Non-Secure state.
|
|
*
|
|
* @param secure_esf Pointer to the secure stack frame.
|
|
*/
|
|
static void _SecureStackDump(const NANO_ESF *secure_esf)
|
|
{
|
|
/*
|
|
* In case a Non-Secure exception interrupted the Secure
|
|
* execution, the Secure state has stacked the additional
|
|
* state context and the top of the stack contains the
|
|
* integrity signature.
|
|
*
|
|
* In case of a Non-Secure function call the top of the
|
|
* stack contains the return address to Secure state.
|
|
*/
|
|
u32_t *top_of_sec_stack = (u32_t *)secure_esf;
|
|
u32_t sec_ret_addr;
|
|
#if defined(CONFIG_ARMV7_M_ARMV8_M_FP)
|
|
if ((*top_of_sec_stack == INTEGRITY_SIGNATURE_STD) ||
|
|
(*top_of_sec_stack == INTEGRITY_SIGNATURE_EXT)) {
|
|
#else
|
|
if (*top_of_sec_stack == INTEGRITY_SIGNATURE) {
|
|
#endif /* CONFIG_ARMV7_M_ARMV8_M_FP */
|
|
/* Secure state interrupted by a Non-Secure exception.
|
|
* The return address after the additional state
|
|
* context, stacked by the Secure code upon
|
|
* Non-Secure exception entry.
|
|
*/
|
|
top_of_sec_stack += ADDITIONAL_STATE_CONTEXT_WORDS;
|
|
secure_esf = (const NANO_ESF *)top_of_sec_stack;
|
|
sec_ret_addr = secure_esf->pc;
|
|
} else {
|
|
/* Exception during Non-Secure function call.
|
|
* The return address is located on top of stack.
|
|
*/
|
|
sec_ret_addr = *top_of_sec_stack;
|
|
}
|
|
PR_FAULT_INFO(" S instruction address: 0x%x\n", sec_ret_addr);
|
|
|
|
}
|
|
#define SECURE_STACK_DUMP(esf) _SecureStackDump(esf)
|
|
#else
|
|
/* We do not dump the Secure stack information for lower dump levels. */
|
|
#define SECURE_STACK_DUMP(esf)
|
|
#endif /* CONFIG_FAULT_DUMP== 2 */
|
|
#endif /* CONFIG_ARM_SECURE_FIRMWARE */
|
|
|
|
/**
|
|
*
|
|
* @brief ARM Fault handler
|
|
*
|
|
* This routine is called when fatal error conditions are detected by hardware
|
|
* and is responsible for:
|
|
* - resetting the processor fault status registers (for the case when the
|
|
* error handling policy allows the system to recover from the error),
|
|
* - reporting the error information,
|
|
* - determining the error reason to be provided as input to the user-
|
|
* provided routine, _NanoFatalErrorHandler().
|
|
* The _NanoFatalErrorHandler() is invoked once the above operations are
|
|
* completed, and is responsible for implementing the error handling policy.
|
|
*
|
|
* The provided ESF pointer points to the exception stack frame of the current
|
|
* security state. Note that the current security state might not be the actual
|
|
* state in which the processor was executing, when the exception occurred.
|
|
* The actual state may need to be determined by inspecting the EXC_RETURN
|
|
* value, which is provided as argument to the Fault handler.
|
|
*
|
|
* @param esf Pointer to the exception stack frame of the current security
|
|
* state. The stack frame may be either on the Main stack (MSP) or Process
|
|
* stack (PSP) depending at what execution state the exception was taken.
|
|
*
|
|
* @param exc_return EXC_RETURN value present in LR after exception entry.
|
|
*
|
|
* Note: exc_return argument shall only be used by the Fault handler if we are
|
|
* running a Secure Firmware.
|
|
*/
|
|
void _Fault(NANO_ESF *esf, u32_t exc_return)
|
|
{
|
|
u32_t reason;
|
|
int fault = SCB->ICSR & SCB_ICSR_VECTACTIVE_Msk;
|
|
|
|
LOG_PANIC();
|
|
|
|
#if defined(CONFIG_ARM_SECURE_FIRMWARE)
|
|
if ((exc_return & EXC_RETURN_INDICATOR_PREFIX) !=
|
|
EXC_RETURN_INDICATOR_PREFIX) {
|
|
/* Invalid EXC_RETURN value */
|
|
goto _exit_fatal;
|
|
}
|
|
if ((exc_return & EXC_RETURN_EXCEPTION_SECURE_Secure) == 0) {
|
|
/* Secure Firmware shall only handle Secure Exceptions.
|
|
* This is a fatal error.
|
|
*/
|
|
goto _exit_fatal;
|
|
}
|
|
|
|
if (exc_return & EXC_RETURN_RETURN_STACK_Secure) {
|
|
/* Exception entry occurred in Secure stack. */
|
|
} else {
|
|
/* Exception entry occurred in Non-Secure stack. Therefore, 'esf'
|
|
* holds the Secure stack information, however, the actual
|
|
* exception stack frame is located in the Non-Secure stack.
|
|
*/
|
|
|
|
/* Dump the Secure stack before handling the actual fault. */
|
|
SECURE_STACK_DUMP(esf);
|
|
|
|
/* Handle the actual fault.
|
|
* Extract the correct stack frame from the Non-Secure state
|
|
* and supply it to the fault handing function.
|
|
*/
|
|
if (exc_return & EXC_RETURN_MODE_THREAD) {
|
|
esf = (NANO_ESF *)__TZ_get_PSP_NS();
|
|
if ((SCB->ICSR & SCB_ICSR_RETTOBASE_Msk) == 0) {
|
|
PR_EXC("RETTOBASE does not match EXC_RETURN\n");
|
|
goto _exit_fatal;
|
|
}
|
|
} else {
|
|
esf = (NANO_ESF *)__TZ_get_MSP_NS();
|
|
if ((SCB->ICSR & SCB_ICSR_RETTOBASE_Msk) != 0) {
|
|
PR_EXC("RETTOBASE does not match EXC_RETURN\n");
|
|
goto _exit_fatal;
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
(void) exc_return;
|
|
#endif /* CONFIG_ARM_SECURE_FIRMWARE*/
|
|
|
|
reason = _FaultHandle(esf, fault);
|
|
|
|
if (reason == _NANO_ERR_RECOVERABLE) {
|
|
return;
|
|
}
|
|
|
|
#if defined(CONFIG_ARM_SECURE_FIRMWARE)
|
|
_exit_fatal:
|
|
reason = _NANO_ERR_HW_EXCEPTION;
|
|
#endif
|
|
_NanoFatalErrorHandler(reason, esf);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Initialization of fault handling
|
|
*
|
|
* Turns on the desired hardware faults.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
void _FaultInit(void)
|
|
{
|
|
#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE)
|
|
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
|
|
SCB->CCR |= SCB_CCR_DIV_0_TRP_Msk;
|
|
#else
|
|
#error Unknown ARM architecture
|
|
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */
|
|
#if defined(CONFIG_BUILTIN_STACK_GUARD)
|
|
/* If Stack guarding via SP limit checking is enabled, disable
|
|
* SP limit checking inside HardFault and NMI. This is done
|
|
* in order to allow for the desired fault logging to execute
|
|
* properly in all cases.
|
|
*
|
|
* Note that this could allow a Secure Firmware Main Stack
|
|
* to descend into non-secure region during HardFault and
|
|
* NMI exception entry. To prevent from this, non-secure
|
|
* memory regions must be located higher than secure memory
|
|
* regions.
|
|
*
|
|
* For Non-Secure Firmware this could allow the Non-Secure Main
|
|
* Stack to attempt to descend into secure region, in which case a
|
|
* Secure Hard Fault will occur and we can track the fault from there.
|
|
*/
|
|
SCB->CCR |= SCB_CCR_STKOFHFNMIGN_Msk;
|
|
#endif /* CONFIG_BUILTIN_STACK_GUARD */
|
|
}
|