zephyr/drivers/counter/counter_sam0_tc32.c
Henrik Brix Andersen c894a6db4d drivers: counter: add counter_get_value(), deprecate counter_read()
Introduce a new counter API function for reading the current counter
value (counter_get_value()) and deprecate the former counter_read() in
favor of this.

Update all drivers and calling code to match the new counter API.

The previous counter driver API function for reading the current value
of the counter (counter_read()) did not support indicating whether the
read suceeded. This is fine for counters internal to the SoC where the
read always succeeds but insufficient for external counters (e.g. I2C
or SPI slaves).

Fixes #21846.

Signed-off-by: Henrik Brix Andersen <henrik@brixandersen.dk>
2020-01-28 12:52:46 -05:00

466 lines
12 KiB
C

/*
* Copyright (c) 2019 Derek Hageman <hageman@inthat.cloud>
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <drivers/counter.h>
#include <device.h>
#include <soc.h>
#include <logging/log.h>
LOG_MODULE_REGISTER(counter_sam0_tc32, CONFIG_COUNTER_LOG_LEVEL);
struct counter_sam0_tc32_ch_data {
counter_alarm_callback_t callback;
void *user_data;
};
struct counter_sam0_tc32_data {
counter_top_callback_t top_cb;
void *top_user_data;
struct counter_sam0_tc32_ch_data ch;
};
struct counter_sam0_tc32_config {
struct counter_config_info info;
TcCount32 *regs;
#ifdef MCLK
volatile u32_t *mclk;
u32_t mclk_mask;
u16_t gclk_id;
#else
u32_t pm_apbcmask;
u16_t gclk_clkctrl_id;
#endif
u16_t prescaler;
void (*irq_config_func)(struct device *dev);
};
#define DEV_CFG(dev) ((const struct counter_sam0_tc32_config *const) \
(dev)->config->config_info)
#define DEV_DATA(dev) ((struct counter_sam0_tc32_data *const) \
(dev)->driver_data)
static void wait_synchronization(TcCount32 *regs)
{
#if defined(TC_SYNCBUSY_MASK)
/* SYNCBUSY is a register */
while ((regs->SYNCBUSY.reg & TC_SYNCBUSY_MASK) != 0) {
}
#elif defined(TC_STATUS_SYNCBUSY)
/* SYNCBUSY is a bit */
while ((regs->STATUS.reg & TC_STATUS_SYNCBUSY) != 0) {
}
#else
#error Unsupported device
#endif
}
static void read_synchronize_count(TcCount32 *regs)
{
#if defined(TC_READREQ_RREQ)
regs->READREQ.reg = TC_READREQ_RREQ |
TC_READREQ_ADDR(TC_COUNT32_COUNT_OFFSET);
wait_synchronization(regs);
#elif defined(TC_CTRLBSET_CMD_READSYNC)
regs->CTRLBSET.reg = TC_CTRLBSET_CMD_READSYNC;
wait_synchronization(regs);
#else
ARG_UNUSED(regs);
#endif
}
static int counter_sam0_tc32_start(struct device *dev)
{
const struct counter_sam0_tc32_config *const cfg = DEV_CFG(dev);
TcCount32 *tc = cfg->regs;
/*
* This will also reset the current counter value if it's
* already running.
*/
tc->CTRLBSET.reg = TC_CTRLBSET_CMD_RETRIGGER;
wait_synchronization(tc);
return 0;
}
static int counter_sam0_tc32_stop(struct device *dev)
{
const struct counter_sam0_tc32_config *const cfg = DEV_CFG(dev);
TcCount32 *tc = cfg->regs;
/*
* The older (pre SAML1x) manuals claim the counter retains its
* value on stop, but this doesn't actually seem to happen.
* The SAML1x manual says it resets, which is what the SAMD21
* counter actually appears to do.
*/
tc->CTRLBSET.reg = TC_CTRLBSET_CMD_STOP;
wait_synchronization(tc);
return 0;
}
static u32_t counter_sam0_tc32_read(struct device *dev)
{
const struct counter_sam0_tc32_config *const cfg = DEV_CFG(dev);
TcCount32 *tc = cfg->regs;
read_synchronize_count(tc);
return tc->COUNT.reg;
}
static int counter_sam0_tc32_get_value(struct device *dev, u32_t *ticks)
{
*ticks = counter_sam0_tc32_read(dev);
return 0;
}
static void counter_sam0_tc32_relative_alarm(struct device *dev, u32_t ticks)
{
struct counter_sam0_tc32_data *data = DEV_DATA(dev);
const struct counter_sam0_tc32_config *const cfg = DEV_CFG(dev);
TcCount32 *tc = cfg->regs;
u32_t before;
u32_t target;
u32_t after;
u32_t max;
read_synchronize_count(tc);
before = tc->COUNT.reg;
target = before + ticks;
max = tc->CC[0].reg;
if (target > max) {
target -= max;
}
tc->CC[1].reg = target;
wait_synchronization(tc);
tc->INTFLAG.reg = TC_INTFLAG_MC1;
read_synchronize_count(tc);
after = tc->COUNT.reg;
/* Pending now, so no further checking required */
if (tc->INTFLAG.bit.MC1) {
goto out_future;
}
/*
* Check if we missed the interrupt and call the handler
* immediately if we did.
*/
if (after < target) {
goto out_future;
}
/* Check wrapped */
if (target < before && after >= before) {
goto out_future;
}
counter_alarm_callback_t cb = data->ch.callback;
tc->INTENCLR.reg = TC_INTENCLR_MC1;
tc->INTFLAG.reg = TC_INTFLAG_MC1;
data->ch.callback = NULL;
cb(dev, 0, target, data->ch.user_data);
return;
out_future:
tc->INTENSET.reg = TC_INTFLAG_MC1;
}
static int counter_sam0_tc32_set_alarm(struct device *dev, u8_t chan_id,
const struct counter_alarm_cfg *alarm_cfg)
{
struct counter_sam0_tc32_data *data = DEV_DATA(dev);
const struct counter_sam0_tc32_config *const cfg = DEV_CFG(dev);
TcCount32 *tc = cfg->regs;
ARG_UNUSED(chan_id);
if (alarm_cfg->ticks > tc->CC[0].reg) {
return -EINVAL;
}
int key = irq_lock();
if (data->ch.callback) {
irq_unlock(key);
return -EBUSY;
}
data->ch.callback = alarm_cfg->callback;
data->ch.user_data = alarm_cfg->user_data;
if ((alarm_cfg->flags & COUNTER_ALARM_CFG_ABSOLUTE) != 0) {
tc->CC[1].reg = alarm_cfg->ticks;
wait_synchronization(tc);
tc->INTFLAG.reg = TC_INTFLAG_MC1;
tc->INTENSET.reg = TC_INTFLAG_MC1;
} else {
counter_sam0_tc32_relative_alarm(dev, alarm_cfg->ticks);
}
irq_unlock(key);
return 0;
}
static int counter_sam0_tc32_cancel_alarm(struct device *dev, u8_t chan_id)
{
struct counter_sam0_tc32_data *data = DEV_DATA(dev);
const struct counter_sam0_tc32_config *const cfg = DEV_CFG(dev);
TcCount32 *tc = cfg->regs;
int key = irq_lock();
ARG_UNUSED(chan_id);
data->ch.callback = NULL;
tc->INTENCLR.reg = TC_INTENCLR_MC1;
tc->INTFLAG.reg = TC_INTFLAG_MC1;
irq_unlock(key);
return 0;
}
static int counter_sam0_tc32_set_top_value(struct device *dev,
const struct counter_top_cfg *top_cfg)
{
struct counter_sam0_tc32_data *data = DEV_DATA(dev);
const struct counter_sam0_tc32_config *const cfg = DEV_CFG(dev);
TcCount32 *tc = cfg->regs;
int err = 0;
int key = irq_lock();
if (data->ch.callback) {
irq_unlock(key);
return -EBUSY;
}
if (top_cfg->callback) {
data->top_cb = top_cfg->callback;
data->top_user_data = top_cfg->user_data;
tc->INTENSET.reg = TC_INTFLAG_MC0;
} else {
tc->INTENCLR.reg = TC_INTFLAG_MC0;
}
tc->CC[0].reg = top_cfg->ticks;
if (top_cfg->flags & COUNTER_TOP_CFG_DONT_RESET) {
/*
* Top trigger is on equality of the rising edge only, so
* manually reset it if the counter has missed the new top.
*/
if (counter_sam0_tc32_read(dev) >= top_cfg->ticks) {
err = -ETIME;
if (top_cfg->flags & COUNTER_TOP_CFG_RESET_WHEN_LATE) {
tc->CTRLBSET.reg = TC_CTRLBSET_CMD_RETRIGGER;
}
}
} else {
tc->CTRLBSET.reg = TC_CTRLBSET_CMD_RETRIGGER;
}
wait_synchronization(tc);
tc->INTFLAG.reg = TC_INTFLAG_MC0;
irq_unlock(key);
return err;
}
static u32_t counter_sam0_tc32_get_pending_int(struct device *dev)
{
const struct counter_sam0_tc32_config *const cfg = DEV_CFG(dev);
TcCount32 *tc = cfg->regs;
return tc->INTFLAG.reg & (TC_INTFLAG_MC0 | TC_INTFLAG_MC1);
}
static u32_t counter_sam0_tc32_get_top_value(struct device *dev)
{
const struct counter_sam0_tc32_config *const cfg = DEV_CFG(dev);
TcCount32 *tc = cfg->regs;
/*
* Unsync read is safe here because we're not using
* capture mode, so things are only set from the CPU
* end.
*/
return tc->CC[0].reg;
}
static u32_t counter_sam0_tc32_get_max_relative_alarm(struct device *dev)
{
return counter_sam0_tc32_get_top_value(dev) - 1;
}
static void counter_sam0_tc32_isr(void *arg)
{
struct device *dev = (struct device *)arg;
struct counter_sam0_tc32_data *data = DEV_DATA(dev);
const struct counter_sam0_tc32_config *const cfg = DEV_CFG(dev);
TcCount32 *tc = cfg->regs;
u8_t status = tc->INTFLAG.reg;
/* Acknowledge all interrupts */
tc->INTFLAG.reg = status;
if (status & TC_INTFLAG_MC1) {
if (data->ch.callback) {
counter_alarm_callback_t cb = data->ch.callback;
tc->INTENCLR.reg = TC_INTENCLR_MC1;
data->ch.callback = NULL;
cb(dev, 0, tc->CC[1].reg, data->ch.user_data);
}
}
if (status & TC_INTFLAG_MC0) {
if (data->top_cb) {
data->top_cb(dev, data->top_user_data);
}
}
}
static int counter_sam0_tc32_initialize(struct device *dev)
{
const struct counter_sam0_tc32_config *const cfg = DEV_CFG(dev);
TcCount32 *tc = cfg->regs;
#ifdef MCLK
/* Enable the GCLK */
GCLK->PCHCTRL[cfg->gclk_id].reg = GCLK_PCHCTRL_GEN_GCLK0 |
GCLK_PCHCTRL_CHEN;
/* Enable TC clock in MCLK */
*cfg->mclk |= cfg->mclk_mask;
#else
/* Enable the GCLK */
GCLK->CLKCTRL.reg = cfg->gclk_clkctrl_id | GCLK_CLKCTRL_GEN_GCLK0 |
GCLK_CLKCTRL_CLKEN;
/* Enable clock in PM */
PM->APBCMASK.reg |= cfg->pm_apbcmask;
#endif
/*
* In 32 bit mode, NFRQ mode always uses MAX as the counter top, so
* use MFRQ mode which uses CC0 as the top at the expense of only
* having CC1 available for alarms.
*/
tc->CTRLA.reg = TC_CTRLA_MODE_COUNT32 |
#ifdef TC_CTRLA_WAVEGEN_MFRQ
TC_CTRLA_WAVEGEN_MFRQ |
#endif
cfg->prescaler;
wait_synchronization(tc);
#ifdef TC_WAVE_WAVEGEN_MFRQ
tc->WAVE.reg = TC_WAVE_WAVEGEN_MFRQ;
#endif
/* Disable all interrupts */
tc->INTENCLR.reg = TC_INTENCLR_MASK;
/* Set the initial top as the maximum */
tc->CC[0].reg = UINT32_MAX;
cfg->irq_config_func(dev);
tc->CTRLA.bit.ENABLE = 1;
wait_synchronization(tc);
/* Stop the counter initially */
tc->CTRLBSET.reg = TC_CTRLBSET_CMD_STOP;
wait_synchronization(tc);
return 0;
}
static const struct counter_driver_api counter_sam0_tc32_driver_api = {
.start = counter_sam0_tc32_start,
.stop = counter_sam0_tc32_stop,
.get_value = counter_sam0_tc32_get_value,
.set_alarm = counter_sam0_tc32_set_alarm,
.cancel_alarm = counter_sam0_tc32_cancel_alarm,
.set_top_value = counter_sam0_tc32_set_top_value,
.get_pending_int = counter_sam0_tc32_get_pending_int,
.get_top_value = counter_sam0_tc32_get_top_value,
.get_max_relative_alarm = counter_sam0_tc32_get_max_relative_alarm,
};
#ifdef MCLK
#define COUNTER_SAM0_TC32_CLOCK_CONTROL(n) \
.mclk = MCLK_TC##n, \
.mclk_mask = MCLK_TC##n##_MASK, \
.gclk_id = TC##n##_GCLK_ID,
#else
#define COUNTER_SAM0_TC32_CLOCK_CONTROL(n) \
.pm_apbcmask = PM_APBCMASK_TC##n, \
.gclk_clkctrl_id = UTIL_CAT(GCLK_CLKCTRL_ID_TC ## n ## _TC, \
UTIL_INC(n)),
#endif
#define COUNTER_SAM0_TC32_DEVICE(n) \
static void counter_sam0_tc32_config_##n(struct device *dev); \
static const struct counter_sam0_tc32_config \
counter_sam0_tc32_dev_config_##n = { \
.info = { \
.max_top_value = UINT32_MAX, \
.freq = SOC_ATMEL_SAM0_GCLK0_FREQ_HZ / \
CONFIG_COUNTER_SAM0_TC32_##n##_DIVISOR, \
.flags = COUNTER_CONFIG_INFO_COUNT_UP, \
.channels = 1 \
}, \
.regs = (TcCount32 *)DT_ATMEL_SAM0_TC32_TC_##n##_BASE_ADDRESS,\
COUNTER_SAM0_TC32_CLOCK_CONTROL(n) \
.prescaler = UTIL_CAT(TC_CTRLA_PRESCALER_DIV, \
CONFIG_COUNTER_SAM0_TC32_##n##_DIVISOR), \
.irq_config_func = &counter_sam0_tc32_config_##n, \
}; \
static struct counter_sam0_tc32_data counter_sam0_tc32_dev_data_##n; \
DEVICE_AND_API_INIT(counter_sam0_tc32_##n, \
DT_ATMEL_SAM0_TC32_TC_##n##_LABEL, \
&counter_sam0_tc32_initialize, \
&counter_sam0_tc32_dev_data_##n, \
&counter_sam0_tc32_dev_config_##n, PRE_KERNEL_1, \
CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \
&counter_sam0_tc32_driver_api); \
static void counter_sam0_tc32_config_##n(struct device *dev) \
{ \
IRQ_CONNECT(DT_ATMEL_SAM0_TC32_TC_##n##_IRQ_0, \
DT_ATMEL_SAM0_TC32_TC_##n##_IRQ_0_PRIORITY, \
counter_sam0_tc32_isr, \
DEVICE_GET(counter_sam0_tc32_##n), \
0); \
irq_enable(DT_ATMEL_SAM0_TC32_TC_##n##_IRQ_0); \
}
#if DT_ATMEL_SAM0_TC32_TC_0_BASE_ADDRESS
COUNTER_SAM0_TC32_DEVICE(0);
#endif
#if DT_ATMEL_SAM0_TC32_TC_2_BASE_ADDRESS
COUNTER_SAM0_TC32_DEVICE(2);
#endif
#if DT_ATMEL_SAM0_TC32_TC_4_BASE_ADDRESS
COUNTER_SAM0_TC32_DEVICE(4);
#endif
#if DT_ATMEL_SAM0_TC32_TC_6_BASE_ADDRESS
COUNTER_SAM0_TC32_DEVICE(6);
#endif