zephyr/kernel/unified/mem_slab.c
Benjamin Walsh f6ca7de09c kernel/arch: consolidate tTCS and TNANO definitions
There was a lot of duplication between architectures for the definition
of threads and the "nanokernel" guts. These have been consolidated.

Now, a common file kernel/unified/include/kernel_structs.h holds the
common definitions. Architectures provide two files to complement it:
kernel_arch_data.h and kernel_arch_func.h. The first one contains at
least the struct _thread_arch and struct _kernel_arch data structures,
as well as the struct _callee_saved and struct _caller_saved register
layouts. The second file contains anything that needs what is provided
by the common stuff in kernel_structs.h. Those two files are only meant
to be included in kernel_structs.h in very specific locations.

The thread data structure has been separated into three major parts:
common struct _thread_base and struct k_thread, and arch-specific struct
_thread_arch. The first and third ones are included in the second.

The struct s_NANO data structure has been split into two: common struct
_kernel and arch-specific struct _kernel_arch. The latter is included in
the former.

Offsets files have also changed: nano_offsets.h has been renamed
kernel_offsets.h and is still included by the arch-specific offsets.c.
Also, since the thread and kernel data structures are now made of
sub-structures, offsets have to be added to make up the full offset.
Some of these additions have been consolidated in shorter symbols,
available from kernel/unified/include/offsets_short.h, which includes an
arch-specific offsets_arch_short.h. Most of the code include
offsets_short.h now instead of offsets.h.

Change-Id: I084645cb7e6db8db69aeaaf162963fe157045d5a
Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-11-12 07:04:52 -05:00

143 lines
3.4 KiB
C

/*
* Copyright (c) 2016 Wind River Systems, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <kernel.h>
#include <kernel_structs.h>
#include <misc/debug/object_tracing_common.h>
#include <toolchain.h>
#include <sections.h>
#include <wait_q.h>
#include <misc/dlist.h>
#include <ksched.h>
#include <init.h>
extern struct k_mem_slab _k_mem_slab_list_start[];
extern struct k_mem_slab _k_mem_slab_list_end[];
struct k_mem_slab *_trace_list_k_mem_slab;
/**
* @brief Initialize kernel memory slab subsystem.
*
* Perform any initialization of memory slabs that wasn't done at build time.
* Currently this just involves creating the list of free blocks for each slab.
*
* @return N/A
*/
static void create_free_list(struct k_mem_slab *slab)
{
char *p;
int j;
slab->free_list = NULL;
p = slab->buffer;
for (j = 0; j < slab->num_blocks; j++) {
*(char **)p = slab->free_list;
slab->free_list = p;
p += slab->block_size;
}
}
/**
* @brief Complete initialization of statically defined memory slabs.
*
* Perform any initialization that wasn't done at build time.
*
* @return N/A
*/
static int init_mem_slab_module(struct device *dev)
{
ARG_UNUSED(dev);
struct k_mem_slab *slab;
for (slab = _k_mem_slab_list_start;
slab < _k_mem_slab_list_end;
slab++) {
create_free_list(slab);
SYS_TRACING_OBJ_INIT(k_mem_slab, slab);
}
return 0;
}
SYS_INIT(init_mem_slab_module, PRE_KERNEL_1,
CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
void k_mem_slab_init(struct k_mem_slab *slab, void *buffer,
size_t block_size, uint32_t num_blocks)
{
slab->num_blocks = num_blocks;
slab->block_size = block_size;
slab->buffer = buffer;
slab->num_used = 0;
create_free_list(slab);
sys_dlist_init(&slab->wait_q);
SYS_TRACING_OBJ_INIT(k_mem_slab, slab);
}
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, int32_t timeout)
{
unsigned int key = irq_lock();
int result;
if (slab->free_list != NULL) {
/* take a free block */
*mem = slab->free_list;
slab->free_list = *(char **)(slab->free_list);
slab->num_used++;
result = 0;
} else if (timeout == K_NO_WAIT) {
/* don't wait for a free block to become available */
*mem = NULL;
result = -ENOMEM;
} else {
/* wait for a free block or timeout */
_pend_current_thread(&slab->wait_q, timeout);
result = _Swap(key);
if (result == 0) {
*mem = _current->base.swap_data;
}
return result;
}
irq_unlock(key);
return result;
}
void k_mem_slab_free(struct k_mem_slab *slab, void **mem)
{
int key = irq_lock();
struct k_thread *pending_thread = _unpend_first_thread(&slab->wait_q);
if (pending_thread) {
_set_thread_return_value_with_data(pending_thread, 0, *mem);
_abort_thread_timeout(pending_thread);
_ready_thread(pending_thread);
if (_must_switch_threads()) {
_Swap(key);
return;
}
} else {
**(char ***)mem = slab->free_list;
slab->free_list = *(char **)mem;
slab->num_used--;
}
irq_unlock(key);
}