zephyr/kernel/microkernel/idle.c
Dan Kalowsky 490c702343 Renaming _WlLoop to _workload_loop
Updating micro kernel functions to follow a consistent naming
convention.  Part of that process is the removal of camelCase
naming conventions for the preferred_underscore_method.

Change accomplished with the following script:

echo "Searching for ${1} to replace with ${2}"

echo "Checking C, CPP, H, HPP, and s files..."
find . -type f \( -iname \*.[ch] -o -iname \*.[ch]pp -o -iname \*.s \) \
       -not \( -path host/src/genIdt -prune \) \
       -not \( -path host/src/gen_tables -prune \) \
       -print | xargs sed -i "s/"${1}"/"${2}"/g"

echo "Checking KCONF, LST, and PY files..."
find . -type f \( -iname \*.lst -o -iname \*.kconf -o -iname \*.py \) \
       -not \( -path host/src/genIdt -prune \) \
       -not \( -path host/src/gen_tables -prune \) \
       -print | xargs sed -i "s/"${1}"/"${2}"/g"

Change-Id: I26965c7640b6caeb73ac11b4f6d5fa793a0be65b
Signed-off-by: Dan Kalowsky <daniel.kalowsky@intel.com>
2016-02-05 20:13:45 -05:00

319 lines
7.9 KiB
C

/* idle.c - microkernel idle logic */
/*
* Copyright (c) 1997-2010, 2012-2014 Wind River Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2) Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3) Neither the name of Wind River Systems nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
DESCRIPTION
Microkernel idle logic. Different forms of idling are performed by the idle
task, depending on how the kernel is configured.
*/
#include <microkernel/k_struct.h>
#include <minik.h>
#include <kticks.h>
#include <nanok.h>
#include <nanokernel/cpu.h>
#include <toolchain.h>
#include <sections.h>
#include <microkernel.h>
#if defined(CONFIG_WORKLOAD_MONITOR)
unsigned int _k_workload_slice = 0x0;
unsigned int _k_workload_ticks = 0x0;
unsigned int _k_workload_ref_time = 0x0;
unsigned int _k_workload_t0 = 0x0;
unsigned int _k_workload_t1 = 0x0;
volatile unsigned int _k_workload_n0 = 0x0;
volatile unsigned int _k_workload_n1 = 0x0;
volatile unsigned int _k_workload_i = 0x0;
volatile unsigned int _k_workload_i0 = 0x0;
volatile unsigned int _k_workload_delta = 0x0;
volatile unsigned int _k_workload_start_time = 0x0;
volatile unsigned int _k_workload_end_time = 0x0;
#ifdef WL_SCALE
extern uint32_t _k_workload_scale;
#endif
#define MSEC_PER_SEC 1000
/*******************************************************************************
*
* _workload_loop - shared code between workload calibration and monitoring
*
* Perform idle task "dummy work".
*
* This routine increments _k_workload_i and checks it against _k_workload_n1. _k_workload_n1 is updated
* by the system tick handler, and both are kept in close synchronization.
*
* RETURNS: N/A
*
*/
static void _workload_loop(void)
{
volatile int x = 87654321;
volatile int y = 4;
while (++_k_workload_i != _k_workload_n1) /* except for the calibration phase,
* this while loop should always be true.
*/
{
unsigned int s_iCountDummyProc = 0;
while (64 != s_iCountDummyProc++) { /* 64 == 2^6 */
x >>= y;
x <<= y;
y++;
x >>= y;
x <<= y;
y--;
}
}
}
/*******************************************************************************
*
* wlMonitorCalibrate - calibrate the workload monitoring subsystem
*
* Measures the time required to do a fixed amount of "dummy work", and
* sets default values for the workload measuring period.
*
* RETURNS: N/A
*
*/
void wlMonitorCalibrate(void)
{
_k_workload_n0 = _k_workload_i = 0;
_k_workload_n1 = 1000;
_k_workload_t0 = timer_read();
_workload_loop();
_k_workload_t1 = timer_read();
_k_workload_delta = _k_workload_t1 - _k_workload_t0;
_k_workload_i0 = _k_workload_i;
#ifdef WL_SCALE
_k_workload_ref_time = (_k_workload_t1 - _k_workload_t0) >> (_k_workload_scale);
#else
_k_workload_ref_time = (_k_workload_t1 - _k_workload_t0) >> (4 + 6);
#endif
_k_workload_slice = 100;
_k_workload_ticks = 100;
}
#endif /* CONFIG_WORKLOAD_MONITOR */
#ifdef CONFIG_WORKLOAD_MONITOR
void K_workload(struct k_args *P)
{
unsigned int k, t;
signed int iret;
k = (_k_workload_i - _k_workload_n0) * _k_workload_ref_time;
#ifdef WL_SCALE
t = (timer_read() - _k_workload_t0) >> (_k_workload_scale);
#else
t = (timer_read() - _k_workload_t0) >> (4 + 6);
#endif
iret = MSEC_PER_SEC - k / t;
/*
* Due to calibration at startup, <iret> could be slightly negative.
* Ensure a negative value is never returned.
*/
if (iret < 0) {
iret = 0;
}
P->Args.u1.rval = iret;
}
#else
void K_workload(struct k_args *P)
{
P->Args.u1.rval = 0;
}
#endif
/*******************************************************************************
*
* task_node_workload_get - read the processor workload
*
* This routine returns the workload as a number ranging from 0 to 1000.
*
* Each unit equals 0.1% of the time the CPU was not idle during the period
* set by workload_time_slice_set().
*
* RETURNS: workload
*/
int task_node_workload_get(void)
{
struct k_args A;
A.Comm = READWL;
KERNEL_ENTRY(&A);
return A.Args.u1.rval;
}
/*******************************************************************************
*
* workload_time_slice_set - set workload period
*
* This routine specifies the workload measuring period for task_node_workload_get().
*
* RETURNS: N/A
*/
void workload_time_slice_set(int32_t t)
{
#ifdef CONFIG_WORKLOAD_MONITOR
if (t < 10)
t = 10;
if (t > 1000)
t = 1000;
_k_workload_slice = t;
#else
ARG_UNUSED(t);
#endif
}
#if defined(CONFIG_ADVANCED_POWER_MANAGEMENT)
/*******************************************************************************
*
* _GetNextTimerExpiry - obtain number of ticks until next timer expires
*
* Must be called with interrupts locked to prevent the timer queues from
* changing.
*
* RETURNS: Number of ticks until next timer expires.
*
*/
static inline int32_t _GetNextTimerExpiry(void)
{
if (_k_timer_list_head)
return _k_timer_list_head->Ti;
return TICKS_UNLIMITED;
}
#endif
/*******************************************************************************
*
* _PowerSave - power saving when idle
*
* If the BSP sets the _sys_power_save_flag flag, this routine will call the
* _SysPowerSaveIdle() routine in an infinite loop. If the flag is not set,
* this routine will fall through and kernel_idle() will try the next idling
* mechanism.
*
* RETURNS: N/A
*
*/
static void _PowerSave(void)
{
extern void nano_cpu_idle(void);
extern unsigned char _sys_power_save_flag;
extern void _SysPowerSaveIdle(int32_t ticks);
if (_sys_power_save_flag) {
for (;;) {
irq_lock_inline();
#ifdef CONFIG_ADVANCED_POWER_MANAGEMENT
_SysPowerSaveIdle(_GetNextTimerExpiry());
#else
/*
* nano_cpu_idle () is invoked here directly only if APM
* is
* disabled. Otherwise BSP decides either to invoke it
* or
* to implement advanced idle functionality
*/
nano_cpu_idle();
#endif
}
/*
* Code analyzers may complain that _PowerSave() uses an
* infinite loop
* unless we indicate that this is intentional
*/
CODE_UNREACHABLE;
}
}
/*******************************************************************************
*
* kernel_idle - microkernel idle task
*
* If power save is on, we sleep. If power save is off, we will try to do
* workload monitoring. If power save is off and workload monitoring
* is not included, we have to busy wait.
*
* RETURNS: N/A
*
*/
int kernel_idle(void)
{
_PowerSave(); /* never returns if power saving is enabled */
#ifdef CONFIG_BOOT_TIME_MEASUREMENT
/* Power saving not enabled, so record timestamp when idle begins here
*/
extern uint64_t __idle_tsc;
__idle_tsc = _NanoTscRead();
#endif
#ifdef CONFIG_WORKLOAD_MONITOR
_workload_loop();
#endif
for (;;) {
/* do nothing */
}
/*
* Code analyzers may complain that kernel_idle() uses an infinite loop
* unless we indicate that this is intentional
*/
CODE_UNREACHABLE;
}