mirror of
https://github.com/zephyrproject-rtos/zephyr
synced 2025-08-21 06:05:22 +00:00
Usually, we want to operate only on "available" device nodes ("available" means "status is okay and a matching binding is found"), but that's not true in all cases. Sometimes we want to operate on special nodes without matching bindings, such as those describing memory. To handle the distinction, change various additional devicetree APIs making it clear that they operate only on available device nodes, adjusting gen_defines and devicetree.h implementation details accordingly: - emit macros for all existing nodes in gen_defines.py, regardless of status or matching binding - rename DT_NUM_INST to DT_NUM_INST_STATUS_OKAY - rename DT_NODE_HAS_COMPAT to DT_NODE_HAS_COMPAT_STATUS_OKAY - rename DT_INST_FOREACH to DT_INST_FOREACH_STATUS_OKAY - rename DT_ANY_INST_ON_BUS to DT_ANY_INST_ON_BUS_STATUS_OKAY - rewrite DT_HAS_NODE_STATUS_OKAY in terms of a new DT_NODE_HAS_STATUS - resurrect DT_HAS_NODE in the form of DT_NODE_EXISTS - remove DT_COMPAT_ON_BUS as a public API - use the new default_prop_types edtlib parameter Signed-off-by: Martí Bolívar <marti.bolivar@nordicsemi.no>
383 lines
9.3 KiB
C
383 lines
9.3 KiB
C
/*
|
|
* Copyright (c) 2017 comsuisse AG
|
|
* Copyright (c) 2018 Justin Watson
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#define DT_DRV_COMPAT atmel_sam_afec
|
|
|
|
/** @file
|
|
* @brief Atmel SAM MCU family ADC (AFEC) driver.
|
|
*
|
|
* This is an implementation of the Zephyr ADC driver using the SAM Analog
|
|
* Front-End Controller (AFEC) peripheral.
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <sys/__assert.h>
|
|
#include <sys/util.h>
|
|
#include <device.h>
|
|
#include <init.h>
|
|
#include <soc.h>
|
|
#include <drivers/adc.h>
|
|
|
|
#define ADC_CONTEXT_USES_KERNEL_TIMER
|
|
#include "adc_context.h"
|
|
|
|
#define LOG_LEVEL CONFIG_ADC_LOG_LEVEL
|
|
#include <logging/log.h>
|
|
LOG_MODULE_REGISTER(adc_sam_afec);
|
|
|
|
#define NUM_CHANNELS 12
|
|
|
|
#define CONF_ADC_PRESCALER ((SOC_ATMEL_SAM_MCK_FREQ_HZ / 15000000) - 1)
|
|
|
|
typedef void (*cfg_func_t)(struct device *dev);
|
|
|
|
struct adc_sam_data {
|
|
struct adc_context ctx;
|
|
struct device *dev;
|
|
|
|
/* Pointer to the buffer in the sequence. */
|
|
u16_t *buffer;
|
|
|
|
/* Pointer to the beginning of a sample. Consider the number of
|
|
* channels in the sequence: this buffer changes by that amount
|
|
* so all the channels would get repeated.
|
|
*/
|
|
u16_t *repeat_buffer;
|
|
|
|
/* Bit mask of the channels to be sampled. */
|
|
u32_t channels;
|
|
|
|
/* Index of the channel being sampled. */
|
|
u8_t channel_id;
|
|
};
|
|
|
|
struct adc_sam_cfg {
|
|
Afec *regs;
|
|
cfg_func_t cfg_func;
|
|
u32_t periph_id;
|
|
struct soc_gpio_pin afec_trg_pin;
|
|
};
|
|
|
|
#define DEV_CFG(dev) \
|
|
((const struct adc_sam_cfg *const)(dev)->config_info)
|
|
|
|
#define DEV_DATA(dev) \
|
|
((struct adc_sam_data *)(dev)->driver_data)
|
|
|
|
static int adc_sam_channel_setup(struct device *dev,
|
|
const struct adc_channel_cfg *channel_cfg)
|
|
{
|
|
const struct adc_sam_cfg * const cfg = DEV_CFG(dev);
|
|
Afec *const afec = cfg->regs;
|
|
|
|
u8_t channel_id = channel_cfg->channel_id;
|
|
|
|
/* Clear the gain bits for the channel. */
|
|
afec->AFEC_CGR &= ~(3 << channel_id * 2U);
|
|
|
|
switch (channel_cfg->gain) {
|
|
case ADC_GAIN_1:
|
|
/* A value of 0 in this register is a gain of 1. */
|
|
break;
|
|
case ADC_GAIN_1_2:
|
|
afec->AFEC_CGR |= (1 << (channel_id * 2U));
|
|
break;
|
|
case ADC_GAIN_1_4:
|
|
afec->AFEC_CGR |= (2 << (channel_id * 2U));
|
|
break;
|
|
default:
|
|
LOG_ERR("Selected ADC gain is not valid");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
|
|
LOG_ERR("Selected ADC acquisition time is not valid");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (channel_cfg->reference != ADC_REF_EXTERNAL0) {
|
|
LOG_ERR("Selected reference is not valid");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (channel_cfg->differential) {
|
|
LOG_ERR("Differential input is not supported");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Set single ended channels to unsigned and differential channels
|
|
* to signed conversions.
|
|
*/
|
|
afec->AFEC_EMR &= ~(AFEC_EMR_SIGNMODE(
|
|
AFEC_EMR_SIGNMODE_SE_UNSG_DF_SIGN_Val));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void adc_sam_start_conversion(struct device *dev)
|
|
{
|
|
const struct adc_sam_cfg *const cfg = DEV_CFG(dev);
|
|
struct adc_sam_data *data = DEV_DATA(dev);
|
|
Afec *const afec = cfg->regs;
|
|
|
|
data->channel_id = find_lsb_set(data->channels) - 1;
|
|
|
|
LOG_DBG("Starting channel %d", data->channel_id);
|
|
|
|
/* Disable all channels. */
|
|
afec->AFEC_CHDR = 0xfff;
|
|
afec->AFEC_IDR = 0xfff;
|
|
|
|
/* Enable the ADC channel. This also enables/selects the channel pin as
|
|
* an input to the AFEC (50.5.1 SAM E70 datasheet).
|
|
*/
|
|
afec->AFEC_CHER = (1 << data->channel_id);
|
|
|
|
/* Enable the interrupt for the channel. */
|
|
afec->AFEC_IER = (1 << data->channel_id);
|
|
|
|
/* Start the conversions. */
|
|
afec->AFEC_CR = AFEC_CR_START;
|
|
}
|
|
|
|
/**
|
|
* This is only called once at the beginning of all the conversions,
|
|
* all channels as a group.
|
|
*/
|
|
static void adc_context_start_sampling(struct adc_context *ctx)
|
|
{
|
|
struct adc_sam_data *data = CONTAINER_OF(ctx, struct adc_sam_data, ctx);
|
|
|
|
data->channels = ctx->sequence.channels;
|
|
|
|
adc_sam_start_conversion(data->dev);
|
|
}
|
|
|
|
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
|
|
bool repeat_sampling)
|
|
{
|
|
struct adc_sam_data *data = CONTAINER_OF(ctx, struct adc_sam_data, ctx);
|
|
|
|
if (repeat_sampling) {
|
|
data->buffer = data->repeat_buffer;
|
|
}
|
|
}
|
|
|
|
static int check_buffer_size(const struct adc_sequence *sequence,
|
|
u8_t active_channels)
|
|
{
|
|
size_t needed_buffer_size;
|
|
needed_buffer_size = active_channels * sizeof(u16_t);
|
|
if (sequence->options) {
|
|
needed_buffer_size *= (1 + sequence->options->extra_samplings);
|
|
}
|
|
if (sequence->buffer_size < needed_buffer_size) {
|
|
LOG_ERR("Provided buffer is too small (%u/%u)",
|
|
sequence->buffer_size, needed_buffer_size);
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int start_read(struct device *dev, const struct adc_sequence *sequence)
|
|
{
|
|
struct adc_sam_data *data = DEV_DATA(dev);
|
|
int error = 0;
|
|
u32_t channels = sequence->channels;
|
|
|
|
data->channels = 0U;
|
|
|
|
/* Signal an error if the channel selection is invalid (no channels or
|
|
* a non-existing one is selected).
|
|
*/
|
|
if (channels == 0U ||
|
|
(channels & (~0UL << NUM_CHANNELS))) {
|
|
LOG_ERR("Invalid selection of channels");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (sequence->oversampling != 0U) {
|
|
LOG_ERR("Oversampling is not supported");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (sequence->resolution != 12U) {
|
|
/* TODO JKW: Support the Enhanced Resolution Mode 50.6.3 page
|
|
* 1544.
|
|
*/
|
|
LOG_ERR("ADC resolution value %d is not valid",
|
|
sequence->resolution);
|
|
return -EINVAL;
|
|
}
|
|
|
|
u8_t num_active_channels = 0U;
|
|
u8_t channel = 0U;
|
|
|
|
while (channels > 0) {
|
|
if (channels & 1) {
|
|
++num_active_channels;
|
|
}
|
|
channels >>= 1;
|
|
++channel;
|
|
}
|
|
|
|
error = check_buffer_size(sequence, num_active_channels);
|
|
if (error) {
|
|
return error;
|
|
}
|
|
|
|
/* In the context you have a pointer to the adc_sam_data structure
|
|
* only.
|
|
*/
|
|
data->buffer = sequence->buffer;
|
|
data->repeat_buffer = sequence->buffer;
|
|
|
|
/* At this point we allow the scheduler to do other things while
|
|
* we wait for the conversions to complete. This is provided by the
|
|
* adc_context functions. However, the caller of this function is
|
|
* blocked until the results are in.
|
|
*/
|
|
adc_context_start_read(&data->ctx, sequence);
|
|
|
|
error = adc_context_wait_for_completion(&data->ctx);
|
|
return error;
|
|
}
|
|
|
|
static int adc_sam_read(struct device *dev,
|
|
const struct adc_sequence *sequence)
|
|
{
|
|
struct adc_sam_data *data = DEV_DATA(dev);
|
|
int error;
|
|
|
|
adc_context_lock(&data->ctx, false, NULL);
|
|
error = start_read(dev, sequence);
|
|
adc_context_release(&data->ctx, error);
|
|
|
|
return error;
|
|
}
|
|
|
|
static int adc_sam_init(struct device *dev)
|
|
{
|
|
const struct adc_sam_cfg *const cfg = DEV_CFG(dev);
|
|
struct adc_sam_data *data = DEV_DATA(dev);
|
|
Afec *const afec = cfg->regs;
|
|
|
|
/* Reset the AFEC. */
|
|
afec->AFEC_CR = AFEC_CR_SWRST;
|
|
|
|
afec->AFEC_MR = AFEC_MR_TRGEN_DIS
|
|
| AFEC_MR_SLEEP_NORMAL
|
|
| AFEC_MR_FWUP_OFF
|
|
| AFEC_MR_FREERUN_OFF
|
|
| AFEC_MR_PRESCAL(CONF_ADC_PRESCALER)
|
|
| AFEC_MR_STARTUP_SUT96
|
|
| AFEC_MR_ONE
|
|
| AFEC_MR_USEQ_NUM_ORDER;
|
|
|
|
/* Set all channels CM voltage to Vrefp/2 (512). */
|
|
for (int i = 0; i < NUM_CHANNELS; i++) {
|
|
afec->AFEC_CSELR = i;
|
|
afec->AFEC_COCR = 512;
|
|
}
|
|
|
|
/* Enable PGA and Current Bias. */
|
|
afec->AFEC_ACR = AFEC_ACR_PGA0EN
|
|
| AFEC_ACR_PGA1EN
|
|
| AFEC_ACR_IBCTL(1);
|
|
|
|
soc_pmc_peripheral_enable(cfg->periph_id);
|
|
|
|
cfg->cfg_func(dev);
|
|
|
|
data->dev = dev;
|
|
|
|
adc_context_unlock_unconditionally(&data->ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_ADC_ASYNC
|
|
static int adc_sam_read_async(struct device *dev,
|
|
const struct adc_sequence *sequence,
|
|
struct k_poll_signal *async)
|
|
{
|
|
struct adc_sam_data *data = DEV_DATA(dev);
|
|
int error;
|
|
|
|
adc_context_lock(&data->ctx, true, async);
|
|
error = start_read(dev, sequence);
|
|
adc_context_release(&data->ctx, error);
|
|
|
|
return error;
|
|
}
|
|
#endif
|
|
|
|
static const struct adc_driver_api adc_sam_api = {
|
|
.channel_setup = adc_sam_channel_setup,
|
|
.read = adc_sam_read,
|
|
#ifdef CONFIG_ADC_ASYNC
|
|
.read_async = adc_sam_read_async,
|
|
#endif
|
|
};
|
|
|
|
static void adc_sam_isr(void *arg)
|
|
{
|
|
struct device *dev = (struct device *)arg;
|
|
struct adc_sam_data *data = DEV_DATA(dev);
|
|
const struct adc_sam_cfg *const cfg = DEV_CFG(dev);
|
|
Afec *const afec = cfg->regs;
|
|
u16_t result;
|
|
|
|
afec->AFEC_CHDR |= BIT(data->channel_id);
|
|
afec->AFEC_IDR |= BIT(data->channel_id);
|
|
|
|
afec->AFEC_CSELR = AFEC_CSELR_CSEL(data->channel_id);
|
|
result = (u16_t)(afec->AFEC_CDR);
|
|
|
|
*data->buffer++ = result;
|
|
data->channels &= ~BIT(data->channel_id);
|
|
|
|
if (data->channels) {
|
|
adc_sam_start_conversion(dev);
|
|
} else {
|
|
/* Called once all conversions have completed.*/
|
|
adc_context_on_sampling_done(&data->ctx, dev);
|
|
}
|
|
}
|
|
|
|
#define ADC_SAM_INIT(n) \
|
|
static void adc##n##_sam_cfg_func(struct device *dev); \
|
|
\
|
|
static const struct adc_sam_cfg adc##n##_sam_cfg = { \
|
|
.regs = (Afec *)DT_INST_REG_ADDR(n), \
|
|
.cfg_func = adc##n##_sam_cfg_func, \
|
|
.periph_id = DT_INST_PROP(n, peripheral_id), \
|
|
.afec_trg_pin = ATMEL_SAM_DT_PIN(n, 0), \
|
|
}; \
|
|
\
|
|
static struct adc_sam_data adc##n##_sam_data = { \
|
|
ADC_CONTEXT_INIT_TIMER(adc##n##_sam_data, ctx), \
|
|
ADC_CONTEXT_INIT_LOCK(adc##n##_sam_data, ctx), \
|
|
ADC_CONTEXT_INIT_SYNC(adc##n##_sam_data, ctx), \
|
|
}; \
|
|
\
|
|
DEVICE_AND_API_INIT(adc##n##_sam, DT_INST_LABEL(n), \
|
|
adc_sam_init, &adc##n##_sam_data, \
|
|
&adc##n##_sam_cfg, POST_KERNEL, \
|
|
CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \
|
|
&adc_sam_api); \
|
|
\
|
|
static void adc##n##_sam_cfg_func(struct device *dev) \
|
|
{ \
|
|
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \
|
|
adc_sam_isr, \
|
|
DEVICE_GET(adc##n##_sam), 0); \
|
|
irq_enable(DT_INST_IRQN(n)); \
|
|
}
|
|
|
|
DT_INST_FOREACH_STATUS_OKAY(ADC_SAM_INIT)
|