zephyr/scripts/dts/gen_defines.py
Martí Bolívar 0985849aa2 edtlib: use standard logging module
The edtlib strategy for emitting warnings is to print directly to
standard error. This in turn requires hacks to drop stored references
to stderr in various _warn_file attributes so the EDT objects can be
pickled.

In general, I think it's not really appropriate for library modules
like edtlib to be printing to stderr directly. The user should be able
to configure logging for general utility data munging modules like
this as they please, and not just deciding what file to print to.

Move this around so the standard logging module is used instead. We
can preserve backwards compatibility in gen_defines by customizing the
'edtlib' logging module behavior so it prints the exact same thing it
always has.

Signed-off-by: Martí Bolívar <marti.bolivar@nordicsemi.no>
2020-12-13 19:25:24 -05:00

807 lines
27 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) 2019 - 2020 Nordic Semiconductor ASA
# Copyright (c) 2019 Linaro Limited
# SPDX-License-Identifier: BSD-3-Clause
# This script uses edtlib to generate a header file from a devicetree
# (.dts) file. Information from binding files in YAML format is used
# as well.
#
# Bindings are files that describe devicetree nodes. Devicetree nodes are
# usually mapped to bindings via their 'compatible = "..."' property.
#
# See Zephyr's Devicetree user guide for details.
#
# Note: Do not access private (_-prefixed) identifiers from edtlib here (and
# also note that edtlib is not meant to expose the dtlib API directly).
# Instead, think of what API you need, and add it as a public documented API in
# edtlib. This will keep this script simple.
import argparse
from collections import defaultdict
import logging
import os
import pathlib
import pickle
import re
import sys
import edtlib
class LogFormatter(logging.Formatter):
'''A log formatter that prints the level name in lower case,
for compatibility with earlier versions of edtlib.'''
def __init__(self):
super().__init__(fmt='%(levelnamelower)s: %(message)s')
def format(self, record):
record.levelnamelower = record.levelname.lower()
return super().format(record)
def main():
global header_file
global flash_area_num
args = parse_args()
setup_edtlib_logging()
try:
edt = edtlib.EDT(args.dts, args.bindings_dirs,
# Suppress this warning if it's suppressed in dtc
warn_reg_unit_address_mismatch=
"-Wno-simple_bus_reg" not in args.dtc_flags,
default_prop_types=True,
infer_binding_for_paths=["/zephyr,user"])
except edtlib.EDTError as e:
sys.exit(f"devicetree error: {e}")
flash_area_num = 0
# Save merged DTS source, as a debugging aid
with open(args.dts_out, "w", encoding="utf-8") as f:
print(edt.dts_source, file=f)
# The raw index into edt.compat2nodes[compat] is used for node
# instance numbering within a compatible.
#
# As a way to satisfy people's intuitions about instance numbers,
# though, we sort this list so enabled instances come first.
#
# This might look like a hack, but it keeps drivers and
# applications which don't use instance numbers carefully working
# as expected, since e.g. instance number 0 is always the
# singleton instance if there's just one enabled node of a
# particular compatible.
#
# This doesn't violate any devicetree.h API guarantees about
# instance ordering, since we make no promises that instance
# numbers are stable across builds.
for compat, nodes in edt.compat2nodes.items():
edt.compat2nodes[compat] = sorted(
nodes, key=lambda node: 0 if node.status == "okay" else 1)
# Create the generated header.
with open(args.header_out, "w", encoding="utf-8") as header_file:
write_top_comment(edt)
# populate all z_path_id first so any children references will
# work correctly.
for node in sorted(edt.nodes, key=lambda node: node.dep_ordinal):
node.z_path_id = node_z_path_id(node)
for node in sorted(edt.nodes, key=lambda node: node.dep_ordinal):
write_node_comment(node)
if node.parent is not None:
out_comment(f"Node parent ({node.parent.path}) identifier:")
out_dt_define(f"{node.z_path_id}_PARENT",
f"DT_{node.parent.z_path_id}")
write_child_functions(node)
write_dep_info(node)
write_idents_and_existence(node)
write_bus(node)
write_special_props(node)
write_vanilla_props(node)
write_chosen(edt)
write_global_compat_info(edt)
if args.edt_pickle_out:
write_pickled_edt(edt, args.edt_pickle_out)
def setup_edtlib_logging():
# The edtlib module emits logs using the standard 'logging' module.
# Configure it so that warnings and above are printed to stderr,
# using the LogFormatter class defined above to format each message.
handler = logging.StreamHandler(sys.stderr)
handler.setFormatter(LogFormatter())
logger = logging.getLogger('edtlib')
logger.setLevel(logging.WARNING)
logger.addHandler(handler)
def node_z_path_id(node):
# Return the node specific bit of the node's path identifier:
#
# - the root node's path "/" has path identifier "N"
# - "/foo" has "N_S_foo"
# - "/foo/bar" has "N_S_foo_S_bar"
# - "/foo/bar@123" has "N_S_foo_S_bar_123"
#
# This is used throughout this file to generate macros related to
# the node.
components = ["N"]
if node.parent is not None:
components.extend(f"S_{str2ident(component)}" for component in
node.path.split("/")[1:])
return "_".join(components)
def parse_args():
# Returns parsed command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--dts", required=True, help="DTS file")
parser.add_argument("--dtc-flags",
help="'dtc' devicetree compiler flags, some of which "
"might be respected here")
parser.add_argument("--bindings-dirs", nargs='+', required=True,
help="directory with bindings in YAML format, "
"we allow multiple")
parser.add_argument("--header-out", required=True,
help="path to write header to")
parser.add_argument("--dts-out", required=True,
help="path to write merged DTS source code to (e.g. "
"as a debugging aid)")
parser.add_argument("--edt-pickle-out",
help="path to write pickled edtlib.EDT object to")
return parser.parse_args()
def write_top_comment(edt):
# Writes an overview comment with misc. info at the top of the header and
# configuration file
s = f"""\
Generated by gen_defines.py
DTS input file:
{edt.dts_path}
Directories with bindings:
{", ".join(map(relativize, edt.bindings_dirs))}
Node dependency ordering (ordinal and path):
"""
for scc in edt.scc_order:
if len(scc) > 1:
err("cycle in devicetree involving "
+ ", ".join(node.path for node in scc))
s += f" {scc[0].dep_ordinal:<3} {scc[0].path}\n"
s += """
Definitions derived from these nodes in dependency order are next,
followed by /chosen nodes.
"""
out_comment(s, blank_before=False)
def write_node_comment(node):
# Writes a comment describing 'node' to the header and configuration file
s = f"""\
Devicetree node: {node.path}
Node identifier: DT_{node.z_path_id}
"""
if node.matching_compat:
if node.binding_path:
s += f"""
Binding (compatible = {node.matching_compat}):
{relativize(node.binding_path)}
"""
else:
s += f"""
Binding (compatible = {node.matching_compat}):
No yaml (bindings inferred from properties)
"""
if node.description:
# Indent description by two spaces
s += "\nDescription:\n" + \
"\n".join(" " + line for line in
node.description.splitlines()) + \
"\n"
out_comment(s)
def relativize(path):
# If 'path' is within $ZEPHYR_BASE, returns it relative to $ZEPHYR_BASE,
# with a "$ZEPHYR_BASE/..." hint at the start of the string. Otherwise,
# returns 'path' unchanged.
zbase = os.getenv("ZEPHYR_BASE")
if zbase is None:
return path
try:
return str("$ZEPHYR_BASE" / pathlib.Path(path).relative_to(zbase))
except ValueError:
# Not within ZEPHYR_BASE
return path
def write_idents_and_existence(node):
# Writes macros related to the node's aliases, labels, etc.,
# as well as existence flags.
# Aliases
idents = [f"N_ALIAS_{str2ident(alias)}" for alias in node.aliases]
# Instances
for compat in node.compats:
instance_no = node.edt.compat2nodes[compat].index(node)
idents.append(f"N_INST_{instance_no}_{str2ident(compat)}")
# Node labels
idents.extend(f"N_NODELABEL_{str2ident(label)}" for label in node.labels)
out_comment("Existence and alternate IDs:")
out_dt_define(node.z_path_id + "_EXISTS", 1)
# Only determine maxlen if we have any idents
if idents:
maxlen = max(len("DT_" + ident) for ident in idents)
for ident in idents:
out_dt_define(ident, "DT_" + node.z_path_id, width=maxlen)
def write_bus(node):
# Macros about the node's bus controller, if there is one
bus = node.bus_node
if not bus:
return
if not bus.label:
err(f"missing 'label' property on bus node {bus!r}")
out_comment(f"Bus info (controller: '{bus.path}', type: '{node.on_bus}')")
out_dt_define(f"{node.z_path_id}_BUS_{str2ident(node.on_bus)}", 1)
out_dt_define(f"{node.z_path_id}_BUS", f"DT_{bus.z_path_id}")
def write_special_props(node):
# Writes required macros for special case properties, when the
# data cannot otherwise be obtained from write_vanilla_props()
# results
global flash_area_num
out_comment("Special property macros:")
# Macros that are special to the devicetree specification
write_regs(node)
write_interrupts(node)
write_compatibles(node)
write_status(node)
if node.parent and "fixed-partitions" in node.parent.compats:
macro = f"{node.z_path_id}_PARTITION_ID"
out_dt_define(macro, flash_area_num)
flash_area_num += 1
def write_regs(node):
# reg property: edtlib knows the right #address-cells and
# #size-cells, and can therefore pack the register base addresses
# and sizes correctly
idx_vals = []
name_vals = []
path_id = node.z_path_id
if node.regs is not None:
idx_vals.append((f"{path_id}_REG_NUM", len(node.regs)))
for i, reg in enumerate(node.regs):
idx_vals.append((f"{path_id}_REG_IDX_{i}_EXISTS", 1))
if reg.addr is not None:
idx_macro = f"{path_id}_REG_IDX_{i}_VAL_ADDRESS"
idx_vals.append((idx_macro,
f"{reg.addr} /* {hex(reg.addr)} */"))
if reg.name:
name_macro = f"{path_id}_REG_NAME_{reg.name}_VAL_ADDRESS"
name_vals.append((name_macro, f"DT_{idx_macro}"))
if reg.size is not None:
idx_macro = f"{path_id}_REG_IDX_{i}_VAL_SIZE"
idx_vals.append((idx_macro,
f"{reg.size} /* {hex(reg.size)} */"))
if reg.name:
name_macro = f"{path_id}_REG_NAME_{reg.name}_VAL_SIZE"
name_vals.append((name_macro, f"DT_{idx_macro}"))
for macro, val in idx_vals:
out_dt_define(macro, val)
for macro, val in name_vals:
out_dt_define(macro, val)
def write_interrupts(node):
# interrupts property: we have some hard-coded logic for interrupt
# mapping here.
#
# TODO: can we push map_arm_gic_irq_type() and
# encode_zephyr_multi_level_irq() out of Python and into C with
# macro magic in devicetree.h?
def map_arm_gic_irq_type(irq, irq_num):
# Maps ARM GIC IRQ (type)+(index) combo to linear IRQ number
if "type" not in irq.data:
err(f"Expected binding for {irq.controller!r} to have 'type' in "
"interrupt-cells")
irq_type = irq.data["type"]
if irq_type == 0: # GIC_SPI
return irq_num + 32
if irq_type == 1: # GIC_PPI
return irq_num + 16
err(f"Invalid interrupt type specified for {irq!r}")
def encode_zephyr_multi_level_irq(irq, irq_num):
# See doc/reference/kernel/other/interrupts.rst for details
# on how this encoding works
irq_ctrl = irq.controller
# Look for interrupt controller parent until we have none
while irq_ctrl.interrupts:
irq_num = (irq_num + 1) << 8
if "irq" not in irq_ctrl.interrupts[0].data:
err(f"Expected binding for {irq_ctrl!r} to have 'irq' in "
"interrupt-cells")
irq_num |= irq_ctrl.interrupts[0].data["irq"]
irq_ctrl = irq_ctrl.interrupts[0].controller
return irq_num
idx_vals = []
name_vals = []
path_id = node.z_path_id
if node.interrupts is not None:
idx_vals.append((f"{path_id}_IRQ_NUM", len(node.interrupts)))
for i, irq in enumerate(node.interrupts):
for cell_name, cell_value in irq.data.items():
name = str2ident(cell_name)
if cell_name == "irq":
if "arm,gic" in irq.controller.compats:
cell_value = map_arm_gic_irq_type(irq, cell_value)
cell_value = encode_zephyr_multi_level_irq(irq, cell_value)
idx_vals.append((f"{path_id}_IRQ_IDX_{i}_EXISTS", 1))
idx_macro = f"{path_id}_IRQ_IDX_{i}_VAL_{name}"
idx_vals.append((idx_macro, cell_value))
idx_vals.append((idx_macro + "_EXISTS", 1))
if irq.name:
name_macro = \
f"{path_id}_IRQ_NAME_{str2ident(irq.name)}_VAL_{name}"
name_vals.append((name_macro, f"DT_{idx_macro}"))
name_vals.append((name_macro + "_EXISTS", 1))
for macro, val in idx_vals:
out_dt_define(macro, val)
for macro, val in name_vals:
out_dt_define(macro, val)
def write_compatibles(node):
# Writes a macro for each of the node's compatibles. We don't care
# about whether edtlib / Zephyr's binding language recognizes
# them. The compatibles the node provides are what is important.
for compat in node.compats:
out_dt_define(
f"{node.z_path_id}_COMPAT_MATCHES_{str2ident(compat)}", 1)
def write_child_functions(node):
# Writes macro that are helpers that will call a macro/function
# for each child node.
out_dt_define(f"{node.z_path_id}_FOREACH_CHILD(fn)",
" ".join(f"fn(DT_{child.z_path_id})" for child in
node.children.values()))
def write_status(node):
out_dt_define(f"{node.z_path_id}_STATUS_{str2ident(node.status)}", 1)
def write_vanilla_props(node):
# Writes macros for any and all properties defined in the
# "properties" section of the binding for the node.
#
# This does generate macros for special properties as well, like
# regs, etc. Just let that be rather than bothering to add
# never-ending amounts of special case code here to skip special
# properties. This function's macros can't conflict with
# write_special_props() macros, because they're in different
# namespaces. Special cases aren't special enough to break the rules.
macro2val = {}
for prop_name, prop in node.props.items():
macro = f"{node.z_path_id}_P_{str2ident(prop_name)}"
val = prop2value(prop)
if val is not None:
# DT_N_<node-id>_P_<prop-id>
macro2val[macro] = val
if prop.enum_index is not None:
# DT_N_<node-id>_P_<prop-id>_ENUM_IDX
macro2val[macro + "_ENUM_IDX"] = prop.enum_index
spec = prop.spec
if spec.enum_tokenizable:
as_token = prop.val_as_token
# DT_N_<node-id>_P_<prop-id>_ENUM_TOKEN
macro2val[macro + "_ENUM_TOKEN"] = as_token
if spec.enum_upper_tokenizable:
# DT_N_<node-id>_P_<prop-id>_ENUM_UPPER_TOKEN
macro2val[macro + "_ENUM_UPPER_TOKEN"] = as_token.upper()
if "phandle" in prop.type:
macro2val.update(phandle_macros(prop, macro))
elif "array" in prop.type:
# DT_N_<node-id>_P_<prop-id>_IDX_<i>
# DT_N_<node-id>_P_<prop-id>_IDX_<i>_EXISTS
for i, subval in enumerate(prop.val):
if isinstance(subval, str):
macro2val[macro + f"_IDX_{i}"] = quote_str(subval)
else:
macro2val[macro + f"_IDX_{i}"] = subval
macro2val[macro + f"_IDX_{i}_EXISTS"] = 1
plen = prop_len(prop)
if plen is not None:
# DT_N_<node-id>_P_<prop-id>_LEN
macro2val[macro + "_LEN"] = plen
macro2val[f"{macro}_EXISTS"] = 1
if macro2val:
out_comment("Generic property macros:")
for macro, val in macro2val.items():
out_dt_define(macro, val)
else:
out_comment("(No generic property macros)")
def write_dep_info(node):
# Write dependency-related information about the node.
def fmt_dep_list(dep_list):
if dep_list:
# Sort the list by dependency ordinal for predictability.
sorted_list = sorted(dep_list, key=lambda node: node.dep_ordinal)
return "\\\n\t" + \
" \\\n\t".join(f"{n.dep_ordinal}, /* {n.path} */"
for n in sorted_list)
else:
return "/* nothing */"
out_comment("Node's dependency ordinal:")
out_dt_define(f"{node.z_path_id}_ORD", node.dep_ordinal)
out_comment("Ordinals for what this node depends on directly:")
out_dt_define(f"{node.z_path_id}_REQUIRES_ORDS",
fmt_dep_list(node.depends_on))
out_comment("Ordinals for what depends directly on this node:")
out_dt_define(f"{node.z_path_id}_SUPPORTS_ORDS",
fmt_dep_list(node.required_by))
def prop2value(prop):
# Gets the macro value for property 'prop', if there is
# a single well-defined C rvalue that it can be represented as.
# Returns None if there isn't one.
if prop.type == "string":
return quote_str(prop.val)
if prop.type == "int":
return prop.val
if prop.type == "boolean":
return 1 if prop.val else 0
if prop.type in ["array", "uint8-array"]:
return list2init(f"{val} /* {hex(val)} */" for val in prop.val)
if prop.type == "string-array":
return list2init(quote_str(val) for val in prop.val)
# phandle, phandles, phandle-array, path, compound: nothing
return None
def prop_len(prop):
# Returns the property's length if and only if we should generate
# a _LEN macro for the property. Otherwise, returns None.
#
# This deliberately excludes reg and interrupts.
# While they have array type, their lengths as arrays are
# basically nonsense semantically due to #address-cells and
# #size-cells for "reg" and #interrupt-cells for "interrupts".
#
# We have special purpose macros for the number of register blocks
# / interrupt specifiers. Excluding them from this list means
# DT_PROP_LEN(node_id, ...) fails fast at the devicetree.h layer
# with a build error. This forces users to switch to the right
# macros.
if prop.type == "phandle":
return 1
if (prop.type in ["array", "uint8-array", "string-array",
"phandles", "phandle-array"] and
prop.name not in ["reg", "interrupts"]):
return len(prop.val)
return None
def phandle_macros(prop, macro):
# Returns a dict of macros for phandle or phandles property 'prop'.
#
# The 'macro' argument is the N_<node-id>_P_<prop-id> bit.
#
# These are currently special because we can't serialize their
# values without using label properties, which we're trying to get
# away from needing in Zephyr. (Label properties are great for
# humans, but have drawbacks for code size and boot time.)
#
# The names look a bit weird to make it easier for devicetree.h
# to use the same macros for phandle, phandles, and phandle-array.
ret = {}
if prop.type == "phandle":
# A phandle is treated as a phandles with fixed length 1.
ret[f"{macro}_IDX_0_PH"] = f"DT_{prop.val.z_path_id}"
ret[f"{macro}_IDX_0_EXISTS"] = 1
elif prop.type == "phandles":
for i, node in enumerate(prop.val):
ret[f"{macro}_IDX_{i}_PH"] = f"DT_{node.z_path_id}"
ret[f"{macro}_IDX_{i}_EXISTS"] = 1
elif prop.type == "phandle-array":
for i, entry in enumerate(prop.val):
ret.update(controller_and_data_macros(entry, i, macro))
return ret
def controller_and_data_macros(entry, i, macro):
# Helper procedure used by phandle_macros().
#
# Its purpose is to write the "controller" (i.e. label property of
# the phandle's node) and associated data macros for a
# ControllerAndData.
ret = {}
data = entry.data
# DT_N_<node-id>_P_<prop-id>_IDX_<i>_EXISTS
ret[f"{macro}_IDX_{i}_EXISTS"] = 1
# DT_N_<node-id>_P_<prop-id>_IDX_<i>_PH
ret[f"{macro}_IDX_{i}_PH"] = f"DT_{entry.controller.z_path_id}"
# DT_N_<node-id>_P_<prop-id>_IDX_<i>_VAL_<VAL>
for cell, val in data.items():
ret[f"{macro}_IDX_{i}_VAL_{str2ident(cell)}"] = val
ret[f"{macro}_IDX_{i}_VAL_{str2ident(cell)}_EXISTS"] = 1
if not entry.name:
return ret
name = str2ident(entry.name)
# DT_N_<node-id>_P_<prop-id>_IDX_<i>_EXISTS
ret[f"{macro}_IDX_{i}_EXISTS"] = 1
# DT_N_<node-id>_P_<prop-id>_IDX_<i>_NAME
ret[f"{macro}_IDX_{i}_NAME"] = quote_str(entry.name)
# DT_N_<node-id>_P_<prop-id>_NAME_<NAME>_PH
ret[f"{macro}_NAME_{name}_PH"] = f"DT_{entry.controller.z_path_id}"
# DT_N_<node-id>_P_<prop-id>_NAME_<NAME>_EXISTS
ret[f"{macro}_NAME_{name}_EXISTS"] = 1
# DT_N_<node-id>_P_<prop-id>_NAME_<NAME>_VAL_<VAL>
for cell, val in data.items():
cell_ident = str2ident(cell)
ret[f"{macro}_NAME_{name}_VAL_{cell_ident}"] = \
f"DT_{macro}_IDX_{i}_VAL_{cell_ident}"
ret[f"{macro}_NAME_{name}_VAL_{cell_ident}_EXISTS"] = 1
return ret
def write_chosen(edt):
# Tree-wide information such as chosen nodes is printed here.
out_comment("Chosen nodes\n")
chosen = {}
for name, node in edt.chosen_nodes.items():
chosen[f"DT_CHOSEN_{str2ident(name)}"] = f"DT_{node.z_path_id}"
chosen[f"DT_CHOSEN_{str2ident(name)}_EXISTS"] = 1
max_len = max(map(len, chosen), default=0)
for macro, value in chosen.items():
out_define(macro, value, width=max_len)
def write_global_compat_info(edt):
# Tree-wide information related to each compatible, such as number
# of instances with status "okay", is printed here.
n_okay_macros = {}
for_each_macros = {}
compat2buses = defaultdict(list) # just for "okay" nodes
for compat, okay_nodes in edt.compat2okay.items():
for node in okay_nodes:
bus = node.on_bus
if bus is not None and bus not in compat2buses[compat]:
compat2buses[compat].append(bus)
ident = str2ident(compat)
n_okay_macros[f"DT_N_INST_{ident}_NUM_OKAY"] = len(okay_nodes)
for_each_macros[f"DT_FOREACH_OKAY_INST_{ident}(fn)"] = \
" ".join(f"fn({edt.compat2nodes[compat].index(node)})"
for node in okay_nodes)
for compat, nodes in edt.compat2nodes.items():
for node in nodes:
if compat == "fixed-partitions":
for child in node.children.values():
if "label" in child.props:
label = child.props["label"].val
macro = f"COMPAT_{str2ident(compat)}_LABEL_{str2ident(label)}"
val = f"DT_{child.z_path_id}"
out_dt_define(macro, val)
out_dt_define(macro + "_EXISTS", 1)
out_comment('Macros for compatibles with status "okay" nodes\n')
for compat, okay_nodes in edt.compat2okay.items():
if okay_nodes:
out_define(f"DT_COMPAT_HAS_OKAY_{str2ident(compat)}", 1)
out_comment('Macros for status "okay" instances of each compatible\n')
for macro, value in n_okay_macros.items():
out_define(macro, value)
for macro, value in for_each_macros.items():
out_define(macro, value)
out_comment('Bus information for status "okay" nodes of each compatible\n')
for compat, buses in compat2buses.items():
for bus in buses:
out_define(
f"DT_COMPAT_{str2ident(compat)}_BUS_{str2ident(bus)}", 1)
def str2ident(s):
# Converts 's' to a form suitable for (part of) an identifier
return re.sub('[-,.@/+]', '_', s.lower())
def list2init(l):
# Converts 'l', a Python list (or iterable), to a C array initializer
return "{" + ", ".join(l) + "}"
def out_dt_define(macro, val, width=None, deprecation_msg=None):
# Writes "#define DT_<macro> <val>" to the header file
#
# The macro will be left-justified to 'width' characters if that
# is specified, and the value will follow immediately after in
# that case. Otherwise, this function decides how to add
# whitespace between 'macro' and 'val'.
#
# If a 'deprecation_msg' string is passed, the generated identifiers will
# generate a warning if used, via __WARN(<deprecation_msg>)).
#
# Returns the full generated macro for 'macro', with leading "DT_".
ret = "DT_" + macro
out_define(ret, val, width=width, deprecation_msg=deprecation_msg)
return ret
def out_define(macro, val, width=None, deprecation_msg=None):
# Helper for out_dt_define(). Outputs "#define <macro> <val>",
# adds a deprecation message if given, and allocates whitespace
# unless told not to.
warn = fr' __WARN("{deprecation_msg}")' if deprecation_msg else ""
if width:
s = f"#define {macro.ljust(width)}{warn} {val}"
else:
s = f"#define {macro}{warn} {val}"
print(s, file=header_file)
def out_comment(s, blank_before=True):
# Writes 's' as a comment to the header and configuration file. 's' is
# allowed to have multiple lines. blank_before=True adds a blank line
# before the comment.
if blank_before:
print(file=header_file)
if "\n" in s:
# Format multi-line comments like
#
# /*
# * first line
# * second line
# *
# * empty line before this line
# */
res = ["/*"]
for line in s.splitlines():
# Avoid an extra space after '*' for empty lines. They turn red in
# Vim if space error checking is on, which is annoying.
res.append(" *" if not line.strip() else " * " + line)
res.append(" */")
print("\n".join(res), file=header_file)
else:
# Format single-line comments like
#
# /* foo bar */
print("/* " + s + " */", file=header_file)
def escape(s):
# Backslash-escapes any double quotes and backslashes in 's'
# \ must be escaped before " to avoid double escaping
return s.replace("\\", "\\\\").replace('"', '\\"')
def quote_str(s):
# Puts quotes around 's' and escapes any double quotes and
# backslashes within it
return f'"{escape(s)}"'
def write_pickled_edt(edt, out_file):
# Writes the edt object in pickle format to out_file.
with open(out_file, 'wb') as f:
# Pickle protocol version 4 is the default as of Python 3.8
# and was introduced in 3.4, so it is both available and
# recommended on all versions of Python that Zephyr supports
# (at time of writing, Python 3.6 was Zephyr's minimum
# version, and 3.8 the most recent CPython release).
#
# Using a common protocol version here will hopefully avoid
# reproducibility issues in different Python installations.
pickle.dump(edt, f, protocol=4)
def err(s):
raise Exception(s)
if __name__ == "__main__":
main()