zephyr/scripts/dts/grutils.py
Martí Bolívar 54ddd514ae scripts: grutils: tweak sort keys to group siblings
Change the key function used to sort nodes so that unit addresses, if
present, break ties between sibling nodes. This orders siblings in
increasing order by unit-address in any gen_defines output that is
sorted by ordinal.

Signed-off-by: Martí Bolívar <marti.bolivar@nordicsemi.no>
2020-02-04 07:28:45 -06:00

162 lines
5.7 KiB
Python

# Copyright 2009-2013, 2019 Peter A. Bigot
#
# SPDX-License-Identifier: Apache-2.0
# This implementation is derived from the one in
# [PyXB](https://github.com/pabigot/pyxb), stripped down and modified
# specifically to manage edtlib Node instances.
import collections
class Graph:
"""
Represent a directed graph with edtlib Node objects as nodes.
This is used to determine order dependencies among nodes in a
devicetree. An edge from C{source} to C{target} indicates that
some aspect of C{source} requires that some aspect of C{target}
already be available.
"""
def __init__(self, root=None):
self.__roots = None
if root is not None:
self.__roots = {root}
self.__edge_map = collections.defaultdict(set)
self.__reverse_map = collections.defaultdict(set)
self.__nodes = set()
def add_edge(self, source, target):
"""
Add a directed edge from the C{source} to the C{target}.
The nodes are added to the graph if necessary.
"""
self.__edge_map[source].add(target)
if source != target:
self.__reverse_map[target].add(source)
self.__nodes.add(source)
self.__nodes.add(target)
def roots(self):
"""
Return the set of nodes calculated to be roots (i.e., those
that have no incoming edges).
This caches the roots calculated in a previous invocation.
@rtype: C{set}
"""
if not self.__roots:
self.__roots = set()
for n in self.__nodes:
if n not in self.__reverse_map:
self.__roots.add(n)
return self.__roots
def _tarjan(self):
# Execute Tarjan's algorithm on the graph.
#
# Tarjan's algorithm
# (http://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm)
# computes the strongly-connected components
# (http://en.wikipedia.org/wiki/Strongly_connected_component)
# of the graph: i.e., the sets of nodes that form a minimal
# closed set under edge transition. In essence, the loops.
# We use this to detect groups of components that have a
# dependency cycle, and to impose a total order on components
# based on dependencies.
self.__stack = []
self.__scc_order = []
self.__index = 0
self.__tarjan_index = {}
self.__tarjan_low_link = {}
for v in self.__nodes:
self.__tarjan_index[v] = None
roots = sorted(self.roots(), key=node_key)
if self.__nodes and not roots:
raise Exception('TARJAN: No roots found in graph with {} nodes'.format(len(self.__nodes)))
for r in roots:
self._tarjan_root(r)
# Assign ordinals for edtlib
ordinal = 0
for scc in self.__scc_order:
# Zephyr customization: devicetree Node graphs should have
# no loops, so all SCCs should be singletons. That may
# change in the future, but for now we only give an
# ordinal to singletons.
if len(scc) == 1:
scc[0].dep_ordinal = ordinal
ordinal += 1
def _tarjan_root(self, v):
# Do the work of Tarjan's algorithm for a given root node.
if self.__tarjan_index.get(v) is not None:
# "Root" was already reached.
return
self.__tarjan_index[v] = self.__tarjan_low_link[v] = self.__index
self.__index += 1
self.__stack.append(v)
source = v
for target in sorted(self.__edge_map[source], key=node_key):
if self.__tarjan_index[target] is None:
self._tarjan_root(target)
self.__tarjan_low_link[v] = min(self.__tarjan_low_link[v], self.__tarjan_low_link[target])
elif target in self.__stack:
self.__tarjan_low_link[v] = min(self.__tarjan_low_link[v], self.__tarjan_low_link[target])
if self.__tarjan_low_link[v] == self.__tarjan_index[v]:
scc = []
while True:
scc.append(self.__stack.pop())
if v == scc[-1]:
break
self.__scc_order.append(scc)
def scc_order(self):
"""Return the strongly-connected components in order.
The data structure is a list, in dependency order, of strongly
connected components (which can be single nodes). Appearance
of a node in a set earlier in the list indicates that it has
no dependencies on any node that appears in a subsequent set.
This order is preferred over a depth-first-search order for
code generation, since it detects loops.
"""
if not self.__scc_order:
self._tarjan()
return self.__scc_order
__scc_order = None
def depends_on(self, node):
"""Get the nodes that 'node' directly depends on."""
return sorted(self.__edge_map[node], key=node_key)
def required_by(self, node):
"""Get the nodes that directly depend on 'node'."""
return sorted(self.__reverse_map[node], key=node_key)
def node_key(node):
# This sort key ensures that sibling nodes with the same name will
# use unit addresses as tiebreakers. That in turn ensures ordinals
# for otherwise indistinguishable siblings are in increasing order
# by unit address, which is convenient for displaying output.
if node.parent:
parent_path = node.parent.path
else:
parent_path = '/'
if node.unit_addr is not None:
name = node.name.rsplit('@', 1)[0]
unit_addr = node.unit_addr
else:
name = node.name
unit_addr = -1
return (parent_path, name, unit_addr)