zephyr/subsys/usb/class/cdc_acm.c
Paul Sokolovsky 57286afdd6 drivers: uart: Allow to pass arbitrary user data to irq callback
Zephyr UART drivers offer very low-level functionality. Oftentimes,
it would be useful to provide higher-level wrappers around UART
device which would offer additional functionality. However, UART
driver irq callback routine receives just a pointer to (low-level)
UART device, and it's not possible to get to a wrapper structure
(without introducing expensive external mapping structures). This
is an indirect reason why the current UARt wrappers - uart_pipe,
console - are instantiated statically just for one underlying UART
device and cannot be reused for multiple devices.

Solve this by allowing to pass an arbitrary user data to irq
callback, set by new uart_irq_callback_user_data_set() function.
Existing uart_irq_callback_set() keeps setting a callback which
will receive pointer to the device.

While public API maintains compatibility, drivers themselves need
to be updated to support arbitrary user data storage/passing (as
legacy uart_irq_callback_set() functionality is now implemented in
terms of it).

Signed-off-by: Paul Sokolovsky <paul.sokolovsky@linaro.org>
2018-08-02 19:20:12 +02:00

938 lines
24 KiB
C

/*******************************************************************************
*
* Copyright(c) 2015,2016 Intel Corporation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* @file
* @brief CDC ACM device class driver
*
* Driver for USB CDC ACM device class driver
*/
#include <kernel.h>
#include <init.h>
#include <uart.h>
#include <string.h>
#include <misc/byteorder.h>
#include <usb/class/usb_cdc.h>
#include <usb/usb_device.h>
#include <usb/usb_common.h>
#include <usb_descriptor.h>
#ifndef CONFIG_UART_INTERRUPT_DRIVEN
#error "CONFIG_UART_INTERRUPT_DRIVEN must be set for CDC ACM driver"
#endif
/* definitions */
#define SYS_LOG_LEVEL CONFIG_SYS_LOG_USB_CDC_ACM_LEVEL
#include <logging/sys_log.h>
#define DEV_DATA(dev) \
((struct cdc_acm_dev_data_t * const)(dev)->driver_data)
/* 115200bps, no parity, 1 stop bit, 8bit char */
#define CDC_ACM_DEFAUL_BAUDRATE {sys_cpu_to_le32(115200), 0, 0, 8}
/* Size of the internal buffer used for storing received data */
#define CDC_ACM_BUFFER_SIZE (2 * CONFIG_CDC_ACM_BULK_EP_MPS)
/* Max CDC ACM class request max data size */
#define CDC_CLASS_REQ_MAX_DATA_SIZE 8
/* Serial state notification timeout */
#define CDC_CONTROL_SERIAL_STATE_TIMEOUT_US 100000
#define CDC_ACM_INT_EP_ADDR 0x85
#define CDC_ACM_IN_EP_ADDR 0x84
#define CDC_ACM_OUT_EP_ADDR 0x03
#define ACM_INT_EP_IDX 0
#define ACM_OUT_EP_IDX 1
#define ACM_IN_EP_IDX 2
#define ACM_IF0_STRING "ACM-CDC"
struct usb_cdc_acm_config {
#ifdef CONFIG_USB_COMPOSITE_DEVICE
struct usb_association_descriptor iad_cdc;
#endif
struct usb_if_descriptor if0;
struct cdc_header_descriptor if0_header;
struct cdc_cm_descriptor if0_cm;
struct cdc_acm_descriptor if0_acm;
struct cdc_union_descriptor if0_union;
struct usb_ep_descriptor if0_int_ep;
struct usb_if_descriptor if1;
struct usb_ep_descriptor if1_in_ep;
struct usb_ep_descriptor if1_out_ep;
} __packed;
USBD_CLASS_DESCR_DEFINE(primary) struct usb_cdc_acm_config cdc_acm_cfg = {
#ifdef CONFIG_USB_COMPOSITE_DEVICE
.iad_cdc = {
.bLength = sizeof(struct usb_association_descriptor),
.bDescriptorType = USB_ASSOCIATION_DESC,
.bFirstInterface = 0,
.bInterfaceCount = 0x02,
.bFunctionClass = COMMUNICATION_DEVICE_CLASS,
.bFunctionSubClass = ACM_SUBCLASS,
.bFunctionProtocol = 0,
.iFunction = 0,
},
#endif
/* Interface descriptor */
.if0 = {
.bLength = sizeof(struct usb_if_descriptor),
.bDescriptorType = USB_INTERFACE_DESC,
.bInterfaceNumber = 0,
.bAlternateSetting = 0,
.bNumEndpoints = 1,
.bInterfaceClass = COMMUNICATION_DEVICE_CLASS,
.bInterfaceSubClass = ACM_SUBCLASS,
.bInterfaceProtocol = 0,
.iInterface = 0,
},
/* Header Functional Descriptor */
.if0_header = {
.bFunctionLength = sizeof(struct cdc_header_descriptor),
.bDescriptorType = CS_INTERFACE,
.bDescriptorSubtype = HEADER_FUNC_DESC,
.bcdCDC = sys_cpu_to_le16(USB_1_1),
},
/* Call Management Functional Descriptor */
.if0_cm = {
.bFunctionLength = sizeof(struct cdc_cm_descriptor),
.bDescriptorType = CS_INTERFACE,
.bDescriptorSubtype = CALL_MANAGEMENT_FUNC_DESC,
.bmCapabilities = 0x02,
.bDataInterface = 1,
},
/* ACM Functional Descriptor */
.if0_acm = {
.bFunctionLength = sizeof(struct cdc_acm_descriptor),
.bDescriptorType = CS_INTERFACE,
.bDescriptorSubtype = ACM_FUNC_DESC,
/* Device supports the request combination of:
* Set_Line_Coding,
* Set_Control_Line_State,
* Get_Line_Coding
* and the notification Serial_State
*/
.bmCapabilities = 0x02,
},
/* Union Functional Descriptor */
.if0_union = {
.bFunctionLength = sizeof(struct cdc_union_descriptor),
.bDescriptorType = CS_INTERFACE,
.bDescriptorSubtype = UNION_FUNC_DESC,
.bControlInterface = 0,
.bSubordinateInterface0 = 1,
},
/* Endpoint INT */
.if0_int_ep = {
.bLength = sizeof(struct usb_ep_descriptor),
.bDescriptorType = USB_ENDPOINT_DESC,
.bEndpointAddress = CDC_ACM_INT_EP_ADDR,
.bmAttributes = USB_DC_EP_INTERRUPT,
.wMaxPacketSize =
sys_cpu_to_le16(
CONFIG_CDC_ACM_INTERRUPT_EP_MPS),
.bInterval = 0x0A,
},
/* Interface descriptor */
.if1 = {
.bLength = sizeof(struct usb_if_descriptor),
.bDescriptorType = USB_INTERFACE_DESC,
.bInterfaceNumber = 1,
.bAlternateSetting = 0,
.bNumEndpoints = 2,
.bInterfaceClass = COMMUNICATION_DEVICE_CLASS_DATA,
.bInterfaceSubClass = 0,
.bInterfaceProtocol = 0,
.iInterface = 0,
},
/* First Endpoint IN */
.if1_in_ep = {
.bLength = sizeof(struct usb_ep_descriptor),
.bDescriptorType = USB_ENDPOINT_DESC,
.bEndpointAddress = CDC_ACM_IN_EP_ADDR,
.bmAttributes = USB_DC_EP_BULK,
.wMaxPacketSize =
sys_cpu_to_le16(
CONFIG_CDC_ACM_BULK_EP_MPS),
.bInterval = 0x00,
},
/* Second Endpoint OUT */
.if1_out_ep = {
.bLength = sizeof(struct usb_ep_descriptor),
.bDescriptorType = USB_ENDPOINT_DESC,
.bEndpointAddress = CDC_ACM_OUT_EP_ADDR,
.bmAttributes = USB_DC_EP_BULK,
.wMaxPacketSize =
sys_cpu_to_le16(
CONFIG_CDC_ACM_BULK_EP_MPS),
.bInterval = 0x00,
},
};
struct device *cdc_acm_dev;
static struct k_sem poll_wait_sem;
/* Device data structure */
struct cdc_acm_dev_data_t {
/* USB device status code */
enum usb_dc_status_code usb_status;
/* Callback function pointer/arg */
uart_irq_callback_user_data_t cb;
void *cb_data;
/* Tx ready status. Signals when */
u8_t tx_ready;
u8_t rx_ready; /* Rx ready status */
u8_t tx_irq_ena; /* Tx interrupt enable status */
u8_t rx_irq_ena; /* Rx interrupt enable status */
u8_t rx_buf[CDC_ACM_BUFFER_SIZE];/* Internal Rx buffer */
u32_t rx_buf_head; /* Head of the internal Rx buffer */
u32_t rx_buf_tail; /* Tail of the internal Rx buffer */
/* Interface data buffer */
#ifndef CONFIG_USB_COMPOSITE_DEVICE
u8_t interface_data[CDC_CLASS_REQ_MAX_DATA_SIZE];
#endif
/* CDC ACM line coding properties. LE order */
struct cdc_acm_line_coding line_coding;
/* CDC ACM line state bitmap, DTE side */
u8_t line_state;
/* CDC ACM serial state bitmap, DCE side */
u8_t serial_state;
/* CDC ACM notification sent status */
u8_t notification_sent;
};
/**
* @brief Handler called for Class requests not handled by the USB stack.
*
* @param pSetup Information about the request to execute.
* @param len Size of the buffer.
* @param data Buffer containing the request result.
*
* @return 0 on success, negative errno code on fail.
*/
int cdc_acm_class_handle_req(struct usb_setup_packet *pSetup,
s32_t *len, u8_t **data)
{
struct cdc_acm_dev_data_t * const dev_data = DEV_DATA(cdc_acm_dev);
switch (pSetup->bRequest) {
case SET_LINE_CODING:
memcpy(&dev_data->line_coding,
*data, sizeof(dev_data->line_coding));
SYS_LOG_DBG("\nCDC_SET_LINE_CODING %d %d %d %d",
sys_le32_to_cpu(dev_data->line_coding.dwDTERate),
dev_data->line_coding.bCharFormat,
dev_data->line_coding.bParityType,
dev_data->line_coding.bDataBits);
break;
case SET_CONTROL_LINE_STATE:
dev_data->line_state = (u8_t)sys_le16_to_cpu(pSetup->wValue);
SYS_LOG_DBG("CDC_SET_CONTROL_LINE_STATE 0x%x",
dev_data->line_state);
break;
case GET_LINE_CODING:
*data = (u8_t *)(&dev_data->line_coding);
*len = sizeof(dev_data->line_coding);
SYS_LOG_DBG("\nCDC_GET_LINE_CODING %d %d %d %d",
sys_le32_to_cpu(dev_data->line_coding.dwDTERate),
dev_data->line_coding.bCharFormat,
dev_data->line_coding.bParityType,
dev_data->line_coding.bDataBits);
break;
default:
SYS_LOG_DBG("CDC ACM request 0x%x, value 0x%x",
pSetup->bRequest, pSetup->wValue);
return -EINVAL;
}
return 0;
}
/**
* @brief EP Bulk IN handler, used to send data to the Host
*
* @param ep Endpoint address.
* @param ep_status Endpoint status code.
*
* @return N/A.
*/
static void cdc_acm_bulk_in(u8_t ep, enum usb_dc_ep_cb_status_code ep_status)
{
struct cdc_acm_dev_data_t * const dev_data = DEV_DATA(cdc_acm_dev);
ARG_UNUSED(ep_status);
ARG_UNUSED(ep);
dev_data->tx_ready = 1;
k_sem_give(&poll_wait_sem);
/* Call callback only if tx irq ena */
if (dev_data->cb && dev_data->tx_irq_ena) {
dev_data->cb(dev_data->cb_data);
}
}
/**
* @brief EP Bulk OUT handler, used to read the data received from the Host
*
* @param ep Endpoint address.
* @param ep_status Endpoint status code.
*
* @return N/A.
*/
static void cdc_acm_bulk_out(u8_t ep,
enum usb_dc_ep_cb_status_code ep_status)
{
struct cdc_acm_dev_data_t * const dev_data = DEV_DATA(cdc_acm_dev);
u32_t bytes_to_read, i, j, buf_head;
u8_t tmp_buf[4];
ARG_UNUSED(ep_status);
/* Check how many bytes were received */
usb_read(ep, NULL, 0, &bytes_to_read);
buf_head = dev_data->rx_buf_head;
/*
* Quark SE USB controller is always storing data
* in the FIFOs per 32-bit words.
*/
for (i = 0; i < bytes_to_read; i += 4) {
usb_read(ep, tmp_buf, 4, NULL);
for (j = 0; j < 4; j++) {
if (i + j == bytes_to_read) {
/* We read all the data */
break;
}
if (((buf_head + 1) % CDC_ACM_BUFFER_SIZE) ==
dev_data->rx_buf_tail) {
/* FIFO full, discard data */
SYS_LOG_ERR("CDC buffer full!");
} else {
dev_data->rx_buf[buf_head] = tmp_buf[j];
buf_head = (buf_head + 1) % CDC_ACM_BUFFER_SIZE;
}
}
}
dev_data->rx_buf_head = buf_head;
dev_data->rx_ready = 1;
/* Call callback only if rx irq ena */
if (dev_data->cb && dev_data->rx_irq_ena) {
dev_data->cb(dev_data->cb_data);
}
}
/**
* @brief EP Interrupt handler
*
* @param ep Endpoint address.
* @param ep_status Endpoint status code.
*
* @return N/A.
*/
static void cdc_acm_int_in(u8_t ep, enum usb_dc_ep_cb_status_code ep_status)
{
struct cdc_acm_dev_data_t * const dev_data = DEV_DATA(cdc_acm_dev);
ARG_UNUSED(ep_status);
dev_data->notification_sent = 1;
SYS_LOG_DBG("CDC_IntIN EP[%x]\r", ep);
}
/**
* @brief Callback used to know the USB connection status
*
* @param status USB device status code.
*
* @return N/A.
*/
static void cdc_acm_dev_status_cb(enum usb_dc_status_code status, u8_t *param)
{
struct cdc_acm_dev_data_t * const dev_data = DEV_DATA(cdc_acm_dev);
ARG_UNUSED(param);
/* Store the new status */
dev_data->usb_status = status;
/* Check the USB status and do needed action if required */
switch (status) {
case USB_DC_ERROR:
SYS_LOG_DBG("USB device error");
break;
case USB_DC_RESET:
SYS_LOG_DBG("USB device reset detected");
break;
case USB_DC_CONNECTED:
SYS_LOG_DBG("USB device connected");
break;
case USB_DC_CONFIGURED:
SYS_LOG_DBG("USB device configured");
break;
case USB_DC_DISCONNECTED:
SYS_LOG_DBG("USB device disconnected");
break;
case USB_DC_SUSPEND:
SYS_LOG_DBG("USB device suspended");
break;
case USB_DC_RESUME:
SYS_LOG_DBG("USB device resumed");
break;
case USB_DC_UNKNOWN:
default:
SYS_LOG_DBG("USB unknown state");
break;
}
}
static void cdc_interface_config(u8_t bInterfaceNumber)
{
cdc_acm_cfg.if0.bInterfaceNumber = bInterfaceNumber;
cdc_acm_cfg.if0_union.bControlInterface = bInterfaceNumber;
cdc_acm_cfg.if1.bInterfaceNumber = bInterfaceNumber + 1;
cdc_acm_cfg.if0_union.bSubordinateInterface0 = bInterfaceNumber + 1;
#ifdef CONFIG_USB_COMPOSITE_DEVICE
cdc_acm_cfg.iad_cdc.bFirstInterface = bInterfaceNumber;
#endif
}
/* Describe EndPoints configuration */
static struct usb_ep_cfg_data cdc_acm_ep_data[] = {
{
.ep_cb = cdc_acm_int_in,
.ep_addr = CDC_ACM_INT_EP_ADDR
},
{
.ep_cb = cdc_acm_bulk_out,
.ep_addr = CDC_ACM_OUT_EP_ADDR
},
{
.ep_cb = cdc_acm_bulk_in,
.ep_addr = CDC_ACM_IN_EP_ADDR
}
};
/* Configuration of the CDC-ACM Device send to the USB Driver */
USBD_CFG_DATA_DEFINE(cdc_acm) struct usb_cfg_data cdc_acm_config = {
.usb_device_description = NULL,
.interface_config = cdc_interface_config,
.interface_descriptor = &cdc_acm_cfg.if0,
.cb_usb_status = cdc_acm_dev_status_cb,
.interface = {
.class_handler = cdc_acm_class_handle_req,
.custom_handler = NULL,
.payload_data = NULL,
},
.num_endpoints = ARRAY_SIZE(cdc_acm_ep_data),
.endpoint = cdc_acm_ep_data
};
/**
* @brief Set the baud rate
*
* This routine set the given baud rate for the UART.
*
* @param dev CDC ACM device struct.
* @param baudrate Baud rate.
*
* @return N/A.
*/
static void cdc_acm_baudrate_set(struct device *dev, u32_t baudrate)
{
struct cdc_acm_dev_data_t * const dev_data = DEV_DATA(dev);
dev_data->line_coding.dwDTERate = sys_cpu_to_le32(baudrate);
}
/**
* @brief Initialize UART channel
*
* This routine is called to reset the chip in a quiescent state.
* It is assumed that this function is called only once per UART.
*
* @param dev CDC ACM device struct.
*
* @return 0 always.
*/
static int cdc_acm_init(struct device *dev)
{
cdc_acm_dev = dev;
#ifndef CONFIG_USB_COMPOSITE_DEVICE
int ret;
struct cdc_acm_dev_data_t * const dev_data = DEV_DATA(dev);
cdc_acm_config.interface.payload_data = dev_data->interface_data;
cdc_acm_config.usb_device_description = usb_get_device_descriptor();
/* Initialize the USB driver with the right configuration */
ret = usb_set_config(&cdc_acm_config);
if (ret < 0) {
SYS_LOG_ERR("Failed to config USB");
return ret;
}
/* Enable USB driver */
ret = usb_enable(&cdc_acm_config);
if (ret < 0) {
SYS_LOG_ERR("Failed to enable USB");
return ret;
}
#endif
k_sem_init(&poll_wait_sem, 0, UINT_MAX);
return 0;
}
/**
* @brief Fill FIFO with data
*
* @param dev CDC ACM device struct.
* @param tx_data Data to transmit.
* @param len Number of bytes to send.
*
* @return Number of bytes sent.
*/
static int cdc_acm_fifo_fill(struct device *dev,
const u8_t *tx_data, int len)
{
struct cdc_acm_dev_data_t * const dev_data = DEV_DATA(dev);
u32_t wrote = 0;
int err;
if (dev_data->usb_status != USB_DC_CONFIGURED) {
return 0;
}
dev_data->tx_ready = 0;
/* FIXME: On Quark SE Family processor, restrict writing more than
* 4 bytes into TX USB Endpoint. When more than 4 bytes are written,
* sometimes (freq ~1/3000) first 4 bytes are repeated.
* (example: abcdef prints as abcdabcdef) (refer Jira GH-3515).
* Application should handle partial data transfer while writing
* into USB TX Endpoint.
*/
#ifdef CONFIG_SOC_SERIES_QUARK_SE
len = len > sizeof(u32_t) ? sizeof(u32_t) : len;
#endif
err = usb_write(cdc_acm_ep_data[ACM_IN_EP_IDX].ep_addr,
tx_data, len, &wrote);
if (err != 0) {
return err;
}
return wrote;
}
/**
* @brief Read data from FIFO
*
* @param dev CDC ACM device struct.
* @param rx_data Pointer to data container.
* @param size Container size.
*
* @return Number of bytes read.
*/
static int cdc_acm_fifo_read(struct device *dev, u8_t *rx_data,
const int size)
{
u32_t avail_data, bytes_read, i;
struct cdc_acm_dev_data_t * const dev_data = DEV_DATA(dev);
avail_data = (CDC_ACM_BUFFER_SIZE + dev_data->rx_buf_head -
dev_data->rx_buf_tail) % CDC_ACM_BUFFER_SIZE;
if (avail_data > size) {
bytes_read = size;
} else {
bytes_read = avail_data;
}
for (i = 0; i < bytes_read; i++) {
rx_data[i] = dev_data->rx_buf[(dev_data->rx_buf_tail + i) %
CDC_ACM_BUFFER_SIZE];
}
dev_data->rx_buf_tail = (dev_data->rx_buf_tail + bytes_read) %
CDC_ACM_BUFFER_SIZE;
if (dev_data->rx_buf_tail == dev_data->rx_buf_head) {
/* Buffer empty */
dev_data->rx_ready = 0;
}
return bytes_read;
}
/**
* @brief Enable TX interrupt
*
* @param dev CDC ACM device struct.
*
* @return N/A.
*/
static void cdc_acm_irq_tx_enable(struct device *dev)
{
struct cdc_acm_dev_data_t * const dev_data = DEV_DATA(dev);
dev_data->tx_irq_ena = 1;
}
/**
* @brief Disable TX interrupt
*
* @param dev CDC ACM device struct.
*
* @return N/A.
*/
static void cdc_acm_irq_tx_disable(struct device *dev)
{
struct cdc_acm_dev_data_t * const dev_data = DEV_DATA(dev);
dev_data->tx_irq_ena = 0;
}
/**
* @brief Check if Tx IRQ has been raised
*
* @param dev CDC ACM device struct.
*
* @return 1 if a Tx IRQ is pending, 0 otherwise.
*/
static int cdc_acm_irq_tx_ready(struct device *dev)
{
struct cdc_acm_dev_data_t * const dev_data = DEV_DATA(dev);
if (dev_data->tx_ready) {
dev_data->tx_ready = 0;
return 1;
}
return 0;
}
/**
* @brief Enable RX interrupt
*
* @param dev CDC ACM device struct.
*
* @return N/A
*/
static void cdc_acm_irq_rx_enable(struct device *dev)
{
struct cdc_acm_dev_data_t * const dev_data = DEV_DATA(dev);
dev_data->rx_irq_ena = 1;
}
/**
* @brief Disable RX interrupt
*
* @param dev CDC ACM device struct.
*
* @return N/A.
*/
static void cdc_acm_irq_rx_disable(struct device *dev)
{
struct cdc_acm_dev_data_t * const dev_data = DEV_DATA(dev);
dev_data->rx_irq_ena = 0;
}
/**
* @brief Check if Rx IRQ has been raised
*
* @param dev CDC ACM device struct.
*
* @return 1 if an IRQ is ready, 0 otherwise.
*/
static int cdc_acm_irq_rx_ready(struct device *dev)
{
struct cdc_acm_dev_data_t * const dev_data = DEV_DATA(dev);
if (dev_data->rx_ready) {
dev_data->rx_ready = 0;
return 1;
}
return 0;
}
/**
* @brief Check if Tx or Rx IRQ is pending
*
* @param dev CDC ACM device struct.
*
* @return 1 if a Tx or Rx IRQ is pending, 0 otherwise.
*/
static int cdc_acm_irq_is_pending(struct device *dev)
{
struct cdc_acm_dev_data_t * const dev_data = DEV_DATA(dev);
if (dev_data->tx_ready && dev_data->tx_irq_ena) {
return 1;
} else if (dev_data->rx_ready && dev_data->rx_irq_ena) {
return 1;
} else {
return 0;
}
}
/**
* @brief Update IRQ status
*
* @param dev CDC ACM device struct.
*
* @return Always 1
*/
static int cdc_acm_irq_update(struct device *dev)
{
ARG_UNUSED(dev);
return 1;
}
/**
* @brief Set the callback function pointer for IRQ.
*
* @param dev CDC ACM device struct.
* @param cb Callback function pointer.
*
* @return N/A
*/
static void cdc_acm_irq_callback_set(struct device *dev,
uart_irq_callback_user_data_t cb,
void *cb_data)
{
struct cdc_acm_dev_data_t * const dev_data = DEV_DATA(dev);
dev_data->cb = cb;
dev_data->cb_data = cb_data;
}
#ifdef CONFIG_UART_LINE_CTRL
/**
* @brief Send serial line state notification to the Host
*
* This routine sends asynchronous notification of UART status
* on the interrupt endpoint
*
* @param dev CDC ACM device struct.
* @param ep_status Endpoint status code.
*
* @return N/A.
*/
static int cdc_acm_send_notification(struct device *dev, u16_t serial_state)
{
struct cdc_acm_dev_data_t * const dev_data = DEV_DATA(dev);
struct cdc_acm_notification notification;
u32_t cnt = 0;
notification.bmRequestType = 0xA1;
notification.bNotificationType = 0x20;
notification.wValue = 0;
notification.wIndex = 0;
notification.wLength = sys_cpu_to_le16(sizeof(serial_state));
notification.data = sys_cpu_to_le16(serial_state);
dev_data->notification_sent = 0;
usb_write(cdc_acm_ep_data[ACM_INT_EP_IDX].ep_addr,
(const u8_t *)&notification, sizeof(notification), NULL);
/* Wait for notification to be sent */
while (!((volatile u8_t)dev_data->notification_sent)) {
k_busy_wait(1);
if (++cnt > CDC_CONTROL_SERIAL_STATE_TIMEOUT_US) {
SYS_LOG_DBG("CDC ACM notification timeout!");
return -EIO;
}
}
return 0;
}
/**
* @brief Manipulate line control for UART.
*
* @param dev CDC ACM device struct
* @param ctrl The line control to be manipulated
* @param val Value to set the line control
*
* @return 0 if successful, failed otherwise.
*/
static int cdc_acm_line_ctrl_set(struct device *dev,
u32_t ctrl, u32_t val)
{
struct cdc_acm_dev_data_t * const dev_data = DEV_DATA(dev);
switch (ctrl) {
case LINE_CTRL_BAUD_RATE:
cdc_acm_baudrate_set(dev, val);
return 0;
case LINE_CTRL_DCD:
dev_data->serial_state &= ~SERIAL_STATE_RX_CARRIER;
if (val) {
dev_data->serial_state |= SERIAL_STATE_RX_CARRIER;
}
cdc_acm_send_notification(dev, SERIAL_STATE_RX_CARRIER);
return 0;
case LINE_CTRL_DSR:
dev_data->serial_state &= ~SERIAL_STATE_TX_CARRIER;
if (val) {
dev_data->serial_state |= SERIAL_STATE_TX_CARRIER;
}
cdc_acm_send_notification(dev, dev_data->serial_state);
return 0;
default:
return -ENODEV;
}
return -ENOTSUP;
}
/**
* @brief Manipulate line control for UART.
*
* @param dev CDC ACM device struct
* @param ctrl The line control to be manipulated
* @param val Value to set the line control
*
* @return 0 if successful, failed otherwise.
*/
static int cdc_acm_line_ctrl_get(struct device *dev,
u32_t ctrl, u32_t *val)
{
struct cdc_acm_dev_data_t * const dev_data = DEV_DATA(dev);
switch (ctrl) {
case LINE_CTRL_BAUD_RATE:
*val = sys_le32_to_cpu(dev_data->line_coding.dwDTERate);
return 0;
case LINE_CTRL_RTS:
*val = (dev_data->line_state &
SET_CONTROL_LINE_STATE_RTS) ? 1 : 0;
return 0;
case LINE_CTRL_DTR:
*val = (dev_data->line_state &
SET_CONTROL_LINE_STATE_DTR) ? 1 : 0;
return 0;
}
return -ENOTSUP;
}
#endif /* CONFIG_UART_LINE_CTRL */
/*
* @brief Poll the device for input.
*
* @return -ENOTSUP Since underlying USB device controller always uses
* interrupts, polled mode UART APIs are not implemented for the UART interface
* exported by CDC ACM driver. Apps should use fifo_read API instead.
*/
static int cdc_acm_poll_in(struct device *dev, unsigned char *c)
{
ARG_UNUSED(dev);
ARG_UNUSED(c);
return -ENOTSUP;
}
/*
* @brief Output a character in polled mode.
*
* The UART poll method for USB UART is simulated by waiting till
* we get the next BULK In upcall from the USB device controller or 100 ms.
*
* @return the same character which is sent
*/
static unsigned char cdc_acm_poll_out(struct device *dev,
unsigned char c)
{
cdc_acm_fifo_fill(dev, &c, 1);
k_sem_take(&poll_wait_sem, K_MSEC(100));
return c;
}
static const struct uart_driver_api cdc_acm_driver_api = {
.poll_in = cdc_acm_poll_in,
.poll_out = cdc_acm_poll_out,
.fifo_fill = cdc_acm_fifo_fill,
.fifo_read = cdc_acm_fifo_read,
.irq_tx_enable = cdc_acm_irq_tx_enable,
.irq_tx_disable = cdc_acm_irq_tx_disable,
.irq_tx_ready = cdc_acm_irq_tx_ready,
.irq_rx_enable = cdc_acm_irq_rx_enable,
.irq_rx_disable = cdc_acm_irq_rx_disable,
.irq_rx_ready = cdc_acm_irq_rx_ready,
.irq_is_pending = cdc_acm_irq_is_pending,
.irq_update = cdc_acm_irq_update,
.irq_callback_set = cdc_acm_irq_callback_set,
#ifdef CONFIG_UART_LINE_CTRL
.line_ctrl_set = cdc_acm_line_ctrl_set,
.line_ctrl_get = cdc_acm_line_ctrl_get,
#endif /* CONFIG_UART_LINE_CTRL */
};
static struct cdc_acm_dev_data_t cdc_acm_dev_data = {
.usb_status = USB_DC_UNKNOWN,
.line_coding = CDC_ACM_DEFAUL_BAUDRATE,
};
DEVICE_AND_API_INIT(cdc_acm, CONFIG_CDC_ACM_PORT_NAME, &cdc_acm_init,
&cdc_acm_dev_data, NULL,
APPLICATION, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&cdc_acm_driver_api);