zephyr/kernel/nanokernel/nano_fifo.c
Benjamin Walsh d8994f69be nanokernel: add nano_fifo_put_list() APIs
Introduce the family of nano_fifo_put_list and nano_fifo_put_slist APIs,
which allow queuing a list of elements on a nanokernel fifo in one
shot. When called from an ISR or a fiber, the behaviour is not really
different than calling nano_fifo_put for each element to enqueue.
However, when called from a task, it allows the task to enqueue the full
list without yielding to fibers that were waiting on the fifo.

All fibers currently waiting on the fifo will be awakened and given an
element from the list in their order of priority. When some elements are
not matched with a receiver, they are queued normally.

There are two ways of passing a list: with either an ad-hoc queue, by
passing the head and the tail elements, or with a sys_slist_t object.
For the latter, the object must be reinitialized afterwards.

Change-Id: I6ac077f556dc39995191e9149c4a047a3433826f
Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-06-13 20:24:41 +00:00

367 lines
8.7 KiB
C

/*
* Copyright (c) 2010-2015 Wind River Systems, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
*
* @brief Nanokernel dynamic-size FIFO queue object.
*
* This module provides the nanokernel FIFO object implementation, including
* the following APIs:
*
* nano_fifo_init
* nano_fiber_fifo_put, nano_task_fifo_put, nano_isr_fifo_put
* nano_fiber_fifo_get, nano_task_fifo_get, nano_isr_fifo_get
* nano_fifo_get
*/
/*
* INTERNAL
* In some cases the compiler "alias" attribute is used to map two or more
* APIs to the same function, since they have identical implementations.
*/
#include <nano_private.h>
#include <misc/debug/object_tracing_common.h>
#include <toolchain.h>
#include <sections.h>
#include <wait_q.h>
#include <misc/__assert.h>
struct fifo_node {
void *next;
};
/**
* @brief Internal routine to append data to a fifo
*
* @return N/A
*/
static inline void data_q_init(struct _nano_queue *q)
{
q->head = NULL;
q->tail = &q->head;
}
/**
* @brief Internal routine to test if queue is empty
*
* @return N/A
*/
static inline int is_q_empty(struct _nano_queue *q)
{
return q->head == NULL;
}
/*
* INTERNAL
* Although the existing implementation will support invocation from an ISR
* context, for future flexibility, this API will be restricted from ISR
* level invocation.
*/
void nano_fifo_init(struct nano_fifo *fifo)
{
_nano_wait_q_init(&fifo->wait_q);
data_q_init(&fifo->data_q);
_TASK_PENDQ_INIT(&fifo->task_q);
SYS_TRACING_OBJ_INIT(nano_fifo, fifo);
}
FUNC_ALIAS(_fifo_put_non_preemptible, nano_isr_fifo_put, void);
FUNC_ALIAS(_fifo_put_non_preemptible, nano_fiber_fifo_put, void);
/**
*
* @brief Internal routine to append data to a fifo
*
* @return N/A
*/
static inline void enqueue_data(struct nano_fifo *fifo, void *data)
{
struct fifo_node *node = data;
struct fifo_node *tail = fifo->data_q.tail;
tail->next = node;
fifo->data_q.tail = node;
node->next = NULL;
}
/**
*
* @brief Append an element to a fifo (no context switch)
*
* This routine adds an element to the end of a fifo object; it may be called
* from either either a fiber or an ISR context. A fiber pending on the fifo
* object will be made ready, but will NOT be scheduled to execute.
*
* If a fiber is waiting on the fifo, the address of the element is returned to
* the waiting fiber. Otherwise, the element is linked to the end of the list.
*
* @param fifo FIFO on which to interact.
* @param data Data to send.
*
* @return N/A
*
* INTERNAL
* This function is capable of supporting invocations from both a fiber and an
* ISR context. However, the nano_isr_fifo_put and nano_fiber_fifo_put aliases
* are created to support any required implementation differences in the future
* without introducing a source code migration issue.
*/
void _fifo_put_non_preemptible(struct nano_fifo *fifo, void *data)
{
struct tcs *tcs;
unsigned int key;
key = irq_lock();
tcs = _nano_wait_q_remove(&fifo->wait_q);
if (tcs) {
_nano_timeout_abort(tcs);
fiberRtnValueSet(tcs, (unsigned int)data);
} else {
enqueue_data(fifo, data);
_NANO_UNPEND_TASKS(&fifo->task_q);
}
irq_unlock(key);
}
void nano_task_fifo_put(struct nano_fifo *fifo, void *data)
{
struct tcs *tcs;
unsigned int key;
key = irq_lock();
tcs = _nano_wait_q_remove(&fifo->wait_q);
if (tcs) {
_nano_timeout_abort(tcs);
fiberRtnValueSet(tcs, (unsigned int)data);
_Swap(key);
return;
}
enqueue_data(fifo, data);
_TASK_NANO_UNPEND_TASKS(&fifo->task_q);
irq_unlock(key);
}
void nano_fifo_put(struct nano_fifo *fifo, void *data)
{
static void (*func[3])(struct nano_fifo *fifo, void *data) = {
nano_isr_fifo_put,
nano_fiber_fifo_put,
nano_task_fifo_put
};
func[sys_execution_context_type_get()](fifo, data);
}
static void enqueue_list(struct nano_fifo *fifo, void *head, void *tail)
{
struct fifo_node *q_tail = fifo->data_q.tail;
q_tail->next = head;
fifo->data_q.tail = tail;
}
void _fifo_put_list_non_preemptible(struct nano_fifo *fifo,
void *head, void *tail)
{
__ASSERT(head && tail, "invalid head or tail");
unsigned int key = irq_lock();
struct tcs *fiber;
while (head && ((fiber = _nano_wait_q_remove(&fifo->wait_q)))) {
_nano_timeout_abort(fiber);
fiberRtnValueSet(fiber, (unsigned int)head);
head = *(void **)head;
}
if (head) {
enqueue_list(fifo, head, tail);
_NANO_UNPEND_TASKS(&fifo->task_q);
}
irq_unlock(key);
}
void _fifo_put_slist_non_preemptible(struct nano_fifo *fifo,
sys_slist_t *list)
{
__ASSERT(!sys_slist_is_empty(list), "list must not be empty");
_fifo_put_list_non_preemptible(fifo, list->head, list->tail);
}
FUNC_ALIAS(_fifo_put_list_non_preemptible, nano_isr_fifo_put_list, void);
FUNC_ALIAS(_fifo_put_list_non_preemptible, nano_fiber_fifo_put_list, void);
FUNC_ALIAS(_fifo_put_slist_non_preemptible, nano_isr_fifo_put_slist, void);
FUNC_ALIAS(_fifo_put_slist_non_preemptible, nano_fiber_fifo_put_slist, void);
void nano_task_fifo_put_list(struct nano_fifo *fifo, void *head, void *tail)
{
__ASSERT(head && tail, "invalid head or tail");
__ASSERT(*(void **)tail == NULL, "list is not NULL-terminated");
unsigned int key = irq_lock();
struct tcs *fiber, *first_fiber;
first_fiber = fifo->wait_q.head;
while (head && ((fiber = _nano_wait_q_remove(&fifo->wait_q)))) {
_nano_timeout_abort(fiber);
fiberRtnValueSet(fiber, (unsigned int)head);
head = *(void **)head;
}
if (head) {
enqueue_list(fifo, head, tail);
_NANO_UNPEND_TASKS(&fifo->task_q);
}
if (first_fiber) {
_Swap(key);
} else {
irq_unlock(key);
}
}
void nano_task_fifo_put_slist(struct nano_fifo *fifo, sys_slist_t *list)
{
__ASSERT(!sys_slist_is_empty(list), "list must not be empty");
nano_task_fifo_put_list(fifo, list->head, list->tail);
}
void nano_fifo_put_list(struct nano_fifo *fifo, void *head, void *tail)
{
static void (*func[3])(struct nano_fifo *, void *, void *) = {
nano_isr_fifo_put_list,
nano_fiber_fifo_put_list,
nano_task_fifo_put_list
};
func[sys_execution_context_type_get()](fifo, head, tail);
}
void nano_fifo_put_slist(struct nano_fifo *fifo, sys_slist_t *list)
{
static void (*func[3])(struct nano_fifo *, sys_slist_t *) = {
nano_isr_fifo_put_slist,
nano_fiber_fifo_put_slist,
nano_task_fifo_put_slist
};
func[sys_execution_context_type_get()](fifo, list);
}
/**
*
* @brief Internal routine to remove data from a fifo
*
* @return The data item removed
*/
static inline void *dequeue_data(struct nano_fifo *fifo)
{
struct fifo_node *head = fifo->data_q.head;
fifo->data_q.head = head->next;
if (fifo->data_q.tail == head) {
fifo->data_q.tail = &fifo->data_q.head;
}
return head;
}
FUNC_ALIAS(_fifo_get, nano_isr_fifo_get, void *);
FUNC_ALIAS(_fifo_get, nano_fiber_fifo_get, void *);
void *_fifo_get(struct nano_fifo *fifo, int32_t timeout_in_ticks)
{
unsigned int key;
void *data = NULL;
key = irq_lock();
if (likely(!is_q_empty(&fifo->data_q))) {
data = dequeue_data(fifo);
} else if (timeout_in_ticks != TICKS_NONE) {
_NANO_TIMEOUT_ADD(&fifo->wait_q, timeout_in_ticks);
_nano_wait_q_put(&fifo->wait_q);
data = (void *)_Swap(key);
return data;
}
irq_unlock(key);
return data;
}
void *nano_task_fifo_get(struct nano_fifo *fifo, int32_t timeout_in_ticks)
{
int64_t cur_ticks;
int64_t limit = 0x7fffffffffffffffll;
unsigned int key;
key = irq_lock();
cur_ticks = _NANO_TIMEOUT_TICK_GET();
if (timeout_in_ticks != TICKS_UNLIMITED) {
limit = cur_ticks + timeout_in_ticks;
}
do {
/*
* Predict that the branch will be taken to break out of the
* loop. There is little cost to a misprediction since that
* leads to idle.
*/
if (likely(!is_q_empty(&fifo->data_q))) {
void *data = dequeue_data(fifo);
irq_unlock(key);
return data;
}
if (timeout_in_ticks != TICKS_NONE) {
_NANO_OBJECT_WAIT(&fifo->task_q, &fifo->data_q.head,
timeout_in_ticks, key);
cur_ticks = _NANO_TIMEOUT_TICK_GET();
_NANO_TIMEOUT_UPDATE(timeout_in_ticks,
limit, cur_ticks);
}
} while (cur_ticks < limit);
irq_unlock(key);
return NULL;
}
void *nano_fifo_get(struct nano_fifo *fifo, int32_t timeout)
{
static void *(*func[3])(struct nano_fifo *, int32_t) = {
nano_isr_fifo_get,
nano_fiber_fifo_get,
nano_task_fifo_get
};
return func[sys_execution_context_type_get()](fifo, timeout);
}