zephyr/drivers/ethernet/eth_dw.c
Jukka Rissanen f2b7492269 ethernet: Add driver initialization priority to Kconfig
The default kernel init priority is too low. Make this
configurable and set the default priority so that the
ethernet driver is started just before the network stack.

This commit adds generic ethernet priority and changes
currently available ethernet drivers to use it.

Change-Id: If695e52b6dd9ea227f10ba306bb145d72d2312b0
Signed-off-by: Jukka Rissanen <jukka.rissanen@linux.intel.com>
2016-12-02 12:41:17 +02:00

342 lines
9.4 KiB
C

/*
* Copyright (c) 2015 Intel Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <nanokernel.h>
#include <sys_io.h>
#include <board.h>
#include <init.h>
#include <string.h>
#include <stdio.h>
#include <stdbool.h>
#include "eth_dw_priv.h"
#include <net/ip/net_driver_ethernet.h>
#include <misc/__assert.h>
#include <errno.h>
#ifdef CONFIG_SHARED_IRQ
#include <shared_irq.h>
#endif
#define SYS_LOG_DOMAIN "ETH DW"
#define SYS_LOG_LEVEL CONFIG_SYS_LOG_ETHERNET_LEVEL
#include <misc/sys_log.h>
static inline uint32_t eth_read(uint32_t base_addr, uint32_t offset)
{
return sys_read32(base_addr + offset);
}
static inline void eth_write(uint32_t base_addr, uint32_t offset,
uint32_t val)
{
sys_write32(val, base_addr + offset);
}
static void eth_rx(struct device *port)
{
struct eth_runtime *context = port->driver_data;
uint32_t base_addr = context->base_addr;
struct net_buf *buf;
uint32_t frm_len = 0;
/* Check whether the RX descriptor is still owned by the device. If not,
* process the received frame or an error that may have occurred.
*/
if (context->rx_desc.own == 1) {
SYS_LOG_ERR("Spurious receive interrupt from Ethernet MAC.\n");
return;
}
if (!net_driver_ethernet_is_opened()) {
goto release_desc;
}
if (context->rx_desc.err_summary) {
SYS_LOG_ERR("Error receiving frame: RDES0 = %08x, RDES1 = %08x.\n",
context->rx_desc.rdes0, context->rx_desc.rdes1);
goto release_desc;
}
frm_len = context->rx_desc.frm_len;
if (frm_len > UIP_BUFSIZE) {
SYS_LOG_ERR("Frame too large: %u.\n", frm_len);
goto release_desc;
}
buf = ip_buf_get_reserve_rx(0);
if (buf == NULL) {
SYS_LOG_ERR("Failed to obtain RX buffer.\n");
goto release_desc;
}
memcpy(net_buf_add(buf, frm_len), (void *)context->rx_buf, frm_len);
uip_len(buf) = frm_len;
net_driver_ethernet_recv(buf);
release_desc:
/* Return ownership of the RX descriptor to the device. */
context->rx_desc.own = 1;
/* Request that the device check for an available RX descriptor, since
* ownership of the descriptor was just transferred to the device.
*/
eth_write(base_addr, REG_ADDR_RX_POLL_DEMAND, 1);
}
/* @brief Transmit the current Ethernet frame.
*
* This procedure will block indefinitely until the Ethernet device is
* ready to accept a new outgoing frame. It then copies the current
* Ethernet frame from the global uip_buf buffer to the device DMA
* buffer and signals to the device that a new frame is available to be
* transmitted.
*/
static int eth_tx(struct device *port, struct net_buf *buf)
{
struct eth_runtime *context = port->driver_data;
uint32_t base_addr = context->base_addr;
/* Wait until the TX descriptor is no longer owned by the device. */
while (context->tx_desc.own == 1) {
}
#ifdef CONFIG_ETHERNET_DEBUG
/* Check whether an error occurred transmitting the previous frame. */
if (context->tx_desc.err_summary) {
SYS_LOG_ERR("Error transmitting frame: TDES0 = %08x, TDES1 = %08x.\n",
context->tx_desc.tdes0, context->tx_desc.tdes1);
}
#endif
/* Transmit the next frame. */
if (uip_len(buf) > UIP_BUFSIZE) {
SYS_LOG_ERR("Frame too large to TX: %u\n", uip_len(buf));
return -1;
}
memcpy((void *)context->tx_buf, uip_buf(buf), uip_len(buf));
context->tx_desc.tx_buf1_sz = uip_len(buf);
context->tx_desc.own = 1;
/* Request that the device check for an available TX descriptor, since
* ownership of the descriptor was just transferred to the device.
*/
eth_write(base_addr, REG_ADDR_TX_POLL_DEMAND, 1);
return 1;
}
static void eth_dw_isr(struct device *port)
{
struct eth_runtime *context = port->driver_data;
uint32_t base_addr = context->base_addr;
uint32_t int_status;
int_status = eth_read(base_addr, REG_ADDR_STATUS);
#ifdef CONFIG_SHARED_IRQ
/* If using with shared IRQ, this function will be called
* by the shared IRQ driver. So check here if the interrupt
* is coming from the GPIO controller (or somewhere else).
*/
if ((int_status & STATUS_RX_INT) == 0) {
return;
}
#endif
eth_rx(port);
/* Acknowledge the interrupt. */
eth_write(base_addr, REG_ADDR_STATUS, STATUS_NORMAL_INT | STATUS_RX_INT);
}
#ifdef CONFIG_PCI
static inline int eth_setup(struct device *dev)
{
struct eth_runtime *context = dev->driver_data;
pci_bus_scan_init();
if (!pci_bus_scan(&context->pci_dev))
return 0;
#ifdef CONFIG_PCI_ENUMERATION
context->base_addr = context->pci_dev.addr;
#endif
pci_enable_regs(&context->pci_dev);
pci_enable_bus_master(&context->pci_dev);
pci_show(&context->pci_dev);
return 1;
}
#else
#define eth_setup(_unused_) (1)
#endif /* CONFIG_PCI */
static int eth_net_tx(struct net_buf *buf);
static int eth_initialize(struct device *port)
{
struct eth_runtime *context = port->driver_data;
const struct eth_config *config = port->config->config_info;
uint32_t base_addr;
union {
struct {
uint8_t bytes[6];
uint8_t pad[2];
} __attribute__((packed));
uint32_t words[2];
} mac_addr;
if (!eth_setup(port))
return -EPERM;
base_addr = context->base_addr;
/* Read the MAC address from the device. */
mac_addr.words[1] = eth_read(base_addr, REG_ADDR_MACADDR_HI);
mac_addr.words[0] = eth_read(base_addr, REG_ADDR_MACADDR_LO);
net_set_mac(mac_addr.bytes, sizeof(mac_addr.bytes));
/* Initialize the frame filter enabling unicast messages */
eth_write(base_addr, REG_ADDR_MAC_FRAME_FILTER, MAC_FILTER_4_PM);
/* Initialize transmit descriptor. */
context->tx_desc.tdes0 = 0;
context->tx_desc.tdes1 = 0;
context->tx_desc.buf1_ptr = (uint8_t *)context->tx_buf;
context->tx_desc.tx_end_of_ring = 1;
context->tx_desc.first_seg_in_frm = 1;
context->tx_desc.last_seg_in_frm = 1;
context->tx_desc.tx_end_of_ring = 1;
/* Initialize receive descriptor. */
context->rx_desc.rdes0 = 0;
context->rx_desc.rdes1 = 0;
context->rx_desc.buf1_ptr = (uint8_t *)context->rx_buf;
context->rx_desc.own = 1;
context->rx_desc.first_desc = 1;
context->rx_desc.last_desc = 1;
context->rx_desc.rx_buf1_sz = UIP_BUFSIZE;
context->rx_desc.rx_end_of_ring = 1;
/* Install transmit and receive descriptors. */
eth_write(base_addr, REG_ADDR_RX_DESC_LIST, (uint32_t)&context->rx_desc);
eth_write(base_addr, REG_ADDR_TX_DESC_LIST, (uint32_t)&context->tx_desc);
eth_write(base_addr, REG_ADDR_MAC_CONF,
/* Set the RMII speed to 100Mbps */
MAC_CONF_14_RMII_100M |
/* Enable full-duplex mode */
MAC_CONF_11_DUPLEX |
/* Enable transmitter */
MAC_CONF_3_TX_EN |
/* Enable receiver */
MAC_CONF_2_RX_EN);
eth_write(base_addr, REG_ADDR_INT_ENABLE,
INT_ENABLE_NORMAL |
/* Enable receive interrupts */
INT_ENABLE_RX);
/* Mask all the MMC interrupts */
eth_write(base_addr, REG_MMC_RX_INTR_MASK, MMC_DEFAULT_MASK);
eth_write(base_addr, REG_MMC_TX_INTR_MASK, MMC_DEFAULT_MASK);
eth_write(base_addr, REG_MMC_RX_IPC_INTR_MASK, MMC_DEFAULT_MASK);
eth_write(base_addr, REG_ADDR_DMA_OPERATION,
/* Enable receive store-and-forward mode for simplicity. */
OP_MODE_25_RX_STORE_N_FORWARD |
/* Enable transmit store-and-forward mode for simplicity. */
OP_MODE_21_TX_STORE_N_FORWARD |
/* Place the transmitter state machine in the Running state. */
OP_MODE_13_START_TX |
/* Place the receiver state machine in the Running state. */
OP_MODE_1_START_RX);
SYS_LOG_INF("Enabled 100M full-duplex mode.");
net_driver_ethernet_register_tx(eth_net_tx);
config->config_func(port);
return 0;
}
/* Bindings to the plaform */
#if CONFIG_ETH_DW_0
static void eth_config_0_irq(struct device *port);
static const struct eth_config eth_config_0 = {
#ifdef CONFIG_ETH_DW_0_IRQ_DIRECT
.irq_num = ETH_DW_0_IRQ,
#endif
.config_func = eth_config_0_irq,
#ifdef CONFIG_ETH_DW_0_IRQ_SHARED
.shared_irq_dev_name = CONFIG_ETH_DW_0_IRQ_SHARED_NAME,
#endif
};
static struct eth_runtime eth_0_runtime = {
.base_addr = ETH_DW_0_BASE_ADDR,
#if CONFIG_PCI
.pci_dev.class_type = ETH_DW_PCI_CLASS,
.pci_dev.bus = ETH_DW_0_PCI_BUS,
.pci_dev.dev = ETH_DW_0_PCI_DEV,
.pci_dev.vendor_id = ETH_DW_PCI_VENDOR_ID,
.pci_dev.device_id = ETH_DW_PCI_DEVICE_ID,
.pci_dev.function = ETH_DW_0_PCI_FUNCTION,
.pci_dev.bar = ETH_DW_0_PCI_BAR,
#endif
};
DEVICE_INIT(eth_dw_0, CONFIG_ETH_DW_0_NAME, eth_initialize,
&eth_0_runtime, &eth_config_0,
NANOKERNEL, CONFIG_ETH_INIT_PRIORITY);
static int eth_net_tx(struct net_buf *buf)
{
return eth_tx(DEVICE_GET(eth_dw_0), buf);
}
static void eth_config_0_irq(struct device *port)
{
const struct eth_config *config = port->config->config_info;
struct device *shared_irq_dev;
#ifdef CONFIG_ETH_DW_0_IRQ_DIRECT
ARG_UNUSED(shared_irq_dev);
IRQ_CONNECT(ETH_DW_0_IRQ, CONFIG_ETH_DW_0_IRQ_PRI, eth_dw_isr,
DEVICE_GET(eth_dw_0), 0);
irq_enable(ETH_DW_0_IRQ);
#elif defined(CONFIG_ETH_DW_0_IRQ_SHARED)
shared_irq_dev = device_get_binding(config->shared_irq_dev_name);
__ASSERT(shared_irq_dev != NULL, "Failed to get eth_dw device binding");
shared_irq_isr_register(shared_irq_dev, (isr_t)eth_dw_isr, port);
shared_irq_enable(shared_irq_dev, port);
#endif
}
#endif /* CONFIG_ETH_DW_0 */