zephyr/drivers/interrupt_controller/intc_ioapic.c
Andrew Boie 63c3e153d6 drivers: use node IDs for DEVICE_MMIO.*_INIT
There is nothing wrong with instance numbers and they are
recommended for use whenever possible, but this is an API
design problem because it's not always possible to get nodes
by instance number; in some cases, drivers need to get node
identifiers from node labels, for example.

Change these APIs (which are not yet in any Zephyr release)
to take node IDs instead of instance IDs.

Fixes: #26984

Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
2020-08-14 13:35:02 +02:00

485 lines
14 KiB
C

/*
* Copyright (c) 1997-1998, 2000-2002, 2004, 2006-2008, 2011-2015 Wind River
* Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT intel_ioapic
/**
* @file
* @brief Intel IO APIC/xAPIC driver
*
* This module is a driver for the IO APIC/xAPIC (Advanced Programmable
* Interrupt Controller) for P6 (PentiumPro, II, III) family processors
* and P7 (Pentium4) family processors. The IO APIC/xAPIC is included
* in the Intel's system chip set, such as ICH2. Software intervention
* may be required to enable the IO APIC/xAPIC in some chip sets.
* The 8259A interrupt controller is intended for use in a uni-processor
* system, IO APIC can be used in either a uni-processor or multi-processor
* system. The IO APIC handles interrupts very differently than the 8259A.
* Briefly, these differences are:
* - Method of Interrupt Transmission. The IO APIC transmits interrupts
* through a 3-wire bus and interrupts are handled without the need for
* the processor to run an interrupt acknowledge cycle.
* - Interrupt Priority. The priority of interrupts in the IO APIC is
* independent of the interrupt number. For example, interrupt 10 can
* be given a higher priority than interrupt 3.
* - More Interrupts. The IO APIC supports a total of 24 interrupts.
*
* The IO APIC unit consists of a set of interrupt input signals, a 24-entry
* by 64-bit Interrupt Redirection Table, programmable registers, and a message
* unit for sending and receiving APIC messages over the APIC bus or the
* Front-Side (system) bus. IO devices inject interrupts into the system by
* asserting one of the interrupt lines to the IO APIC. The IO APIC selects the
* corresponding entry in the Redirection Table and uses the information in that
* entry to format an interrupt request message. Each entry in the Redirection
* Table can be individually programmed to indicate edge/level sensitive interrupt
* signals, the interrupt vector and priority, the destination processor, and how
* the processor is selected (statically and dynamically). The information in
* the table is used to transmit a message to other APIC units (via the APIC bus
* or the Front-Side (system) bus). IO APIC is used in the Symmetric IO Mode.
* The base address of IO APIC is determined in loapic_init() and stored in the
* global variable ioApicBase and ioApicData.
* The lower 32 bit value of the redirection table entries for IRQ 0
* to 15 are edge triggered positive high, and for IRQ 16 to 23 are level
* triggered positive low.
*
* This implementation doesn't support multiple IO APICs.
*
* INCLUDE FILES: ioapic.h loapic.h
*
*/
#include <kernel.h>
#include <arch/cpu.h>
#include <toolchain.h>
#include <linker/sections.h>
#include <device.h>
#include <string.h>
#include <drivers/interrupt_controller/ioapic.h> /* public API declarations */
#include <drivers/interrupt_controller/loapic.h> /* public API declarations and registers */
#include "intc_ioapic_priv.h"
DEVICE_MMIO_TOPLEVEL_STATIC(ioapic_regs, DT_DRV_INST(0));
#define IOAPIC_REG DEVICE_MMIO_TOPLEVEL_GET(ioapic_regs)
#define BITS_PER_IRQ 4
#define IOAPIC_BITFIELD_HI_LO 0
#define IOAPIC_BITFIELD_LVL_EDGE 1
#define IOAPIC_BITFIELD_ENBL_DSBL 2
#define IOAPIC_BITFIELD_DELIV_MODE 3
#define BIT_POS_FOR_IRQ_OPTION(irq, option) ((irq) * BITS_PER_IRQ + (option))
#define SUSPEND_BITS_REQD (ROUND_UP((CONFIG_IOAPIC_NUM_RTES * BITS_PER_IRQ), 32))
/*
* Destination field (bits[56:63]) defines a set of processors, which is
* used to be compared with local LDR to determine which local APICs accept
* the interrupt.
*
* XAPIC: in logical destination mode and flat model (determined by DFR).
* LDR bits[24:31] can accommodate up to 8 logical APIC IDs.
*
* X2APIC: in logical destination mode and cluster model.
* In this case, LDR is read-only to system software and supports up to 16
* logical IDs. (Cluster ID: don't care to IO APIC).
*
* In either case, regardless how many CPUs in the system, 0xff implies that
* it's intended to deliver to all possible 8 local APICs.
*/
#define DEFAULT_RTE_DEST (0xFF << 24)
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
#include <power/power.h>
uint32_t ioapic_suspend_buf[SUSPEND_BITS_REQD / 32] = {0};
static uint32_t ioapic_device_power_state = DEVICE_PM_ACTIVE_STATE;
#endif
static uint32_t __IoApicGet(int32_t offset);
static void __IoApicSet(int32_t offset, uint32_t value);
static void ioApicRedSetHi(unsigned int irq, uint32_t upper32);
static void ioApicRedSetLo(unsigned int irq, uint32_t lower32);
static uint32_t ioApicRedGetLo(unsigned int irq);
static void IoApicRedUpdateLo(unsigned int irq, uint32_t value,
uint32_t mask);
/*
* The functions irq_enable() and irq_disable() are implemented in the
* interrupt controller driver due to the IRQ virtualization imposed by
* the x86 architecture.
*/
/**
*
* @brief Initialize the IO APIC or xAPIC
*
* This routine initializes the IO APIC or xAPIC.
*
* @return N/A
*/
int ioapic_init(struct device *unused)
{
ARG_UNUSED(unused);
DEVICE_MMIO_TOPLEVEL_MAP(ioapic_regs, K_MEM_CACHE_NONE);
#ifdef CONFIG_IOAPIC_MASK_RTE
int32_t ix; /* redirection table index */
uint32_t rteValue; /* value to copy into redirection table entry */
/*
* The platform must set the Kconfig option IOAPIC_NUM_RTES to indicate
* the number of redirection table entries supported by the IOAPIC.
*
* Note: The number of actual IRQs supported by the IOAPIC can be
* determined at runtime by computing:
*
* ((__IoApicGet(IOAPIC_VERS) & IOAPIC_MRE_MASK) >> 16) + 1
*/
rteValue = IOAPIC_EDGE | IOAPIC_HIGH | IOAPIC_FIXED | IOAPIC_INT_MASK |
IOAPIC_LOGICAL | 0 /* dummy vector */;
for (ix = 0; ix < CONFIG_IOAPIC_NUM_RTES; ix++) {
ioApicRedSetHi(ix, DEFAULT_RTE_DEST);
ioApicRedSetLo(ix, rteValue);
}
#endif
return 0;
}
/**
*
* @brief Enable a specified APIC interrupt input line
*
* This routine enables a specified APIC interrupt input line.
* @param irq IRQ number to enable
*
* @return N/A
*/
void z_ioapic_irq_enable(unsigned int irq)
{
IoApicRedUpdateLo(irq, 0, IOAPIC_INT_MASK);
}
/**
*
* @brief Disable a specified APIC interrupt input line
*
* This routine disables a specified APIC interrupt input line.
* @param irq IRQ number to disable
*
* @return N/A
*/
void z_ioapic_irq_disable(unsigned int irq)
{
IoApicRedUpdateLo(irq, IOAPIC_INT_MASK, IOAPIC_INT_MASK);
}
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
void store_flags(unsigned int irq, uint32_t flags)
{
/* Currently only the following four flags are modified */
if (flags & IOAPIC_LOW) {
sys_bitfield_set_bit((mem_addr_t) ioapic_suspend_buf,
BIT_POS_FOR_IRQ_OPTION(irq, IOAPIC_BITFIELD_HI_LO));
}
if (flags & IOAPIC_LEVEL) {
sys_bitfield_set_bit((mem_addr_t) ioapic_suspend_buf,
BIT_POS_FOR_IRQ_OPTION(irq, IOAPIC_BITFIELD_LVL_EDGE));
}
if (flags & IOAPIC_INT_MASK) {
sys_bitfield_set_bit((mem_addr_t) ioapic_suspend_buf,
BIT_POS_FOR_IRQ_OPTION(irq, IOAPIC_BITFIELD_ENBL_DSBL));
}
/*
* We support lowest priority and fixed mode only, so only one bit
* needs to be saved.
*/
if (flags & IOAPIC_LOWEST) {
sys_bitfield_set_bit((mem_addr_t) ioapic_suspend_buf,
BIT_POS_FOR_IRQ_OPTION(irq, IOAPIC_BITFIELD_DELIV_MODE));
}
}
uint32_t restore_flags(unsigned int irq)
{
uint32_t flags = 0U;
if (sys_bitfield_test_bit((mem_addr_t) ioapic_suspend_buf,
BIT_POS_FOR_IRQ_OPTION(irq, IOAPIC_BITFIELD_HI_LO))) {
flags |= IOAPIC_LOW;
}
if (sys_bitfield_test_bit((mem_addr_t) ioapic_suspend_buf,
BIT_POS_FOR_IRQ_OPTION(irq, IOAPIC_BITFIELD_LVL_EDGE))) {
flags |= IOAPIC_LEVEL;
}
if (sys_bitfield_test_bit((mem_addr_t) ioapic_suspend_buf,
BIT_POS_FOR_IRQ_OPTION(irq, IOAPIC_BITFIELD_ENBL_DSBL))) {
flags |= IOAPIC_INT_MASK;
}
if (sys_bitfield_test_bit((mem_addr_t) ioapic_suspend_buf,
BIT_POS_FOR_IRQ_OPTION(irq, IOAPIC_BITFIELD_DELIV_MODE))) {
flags |= IOAPIC_LOWEST;
}
return flags;
}
int ioapic_suspend(struct device *port)
{
int irq;
uint32_t rte_lo;
ARG_UNUSED(port);
(void)memset(ioapic_suspend_buf, 0, (SUSPEND_BITS_REQD >> 3));
for (irq = 0; irq < CONFIG_IOAPIC_NUM_RTES; irq++) {
/*
* The following check is to figure out the registered
* IRQ lines, so as to limit ourselves to saving the
* flags for them only.
*/
if (_irq_to_interrupt_vector[irq]) {
rte_lo = ioApicRedGetLo(irq);
store_flags(irq, rte_lo);
}
}
ioapic_device_power_state = DEVICE_PM_SUSPEND_STATE;
return 0;
}
int ioapic_resume_from_suspend(struct device *port)
{
int irq;
uint32_t flags;
uint32_t rteValue;
ARG_UNUSED(port);
for (irq = 0; irq < CONFIG_IOAPIC_NUM_RTES; irq++) {
if (_irq_to_interrupt_vector[irq]) {
/* Get the saved flags */
flags = restore_flags(irq);
/* Appending the flags that are never modified */
flags = flags | IOAPIC_LOGICAL;
rteValue = (_irq_to_interrupt_vector[irq] &
IOAPIC_VEC_MASK) | flags;
} else {
/* Initialize the other RTEs to sane values */
rteValue = IOAPIC_EDGE | IOAPIC_HIGH |
IOAPIC_FIXED | IOAPIC_INT_MASK |
IOAPIC_LOGICAL | 0 ; /* dummy vector*/
}
ioApicRedSetHi(irq, DEFAULT_RTE_DEST);
ioApicRedSetLo(irq, rteValue);
}
ioapic_device_power_state = DEVICE_PM_ACTIVE_STATE;
return 0;
}
/*
* Implements the driver control management functionality
* the *context may include IN data or/and OUT data
*/
static int ioapic_device_ctrl(struct device *device, uint32_t ctrl_command,
void *context, device_pm_cb cb, void *arg)
{
int ret = 0;
if (ctrl_command == DEVICE_PM_SET_POWER_STATE) {
if (*((uint32_t *)context) == DEVICE_PM_SUSPEND_STATE) {
ret = ioapic_suspend(device);
} else if (*((uint32_t *)context) == DEVICE_PM_ACTIVE_STATE) {
ret = ioapic_resume_from_suspend(device);
}
} else if (ctrl_command == DEVICE_PM_GET_POWER_STATE) {
*((uint32_t *)context) = ioapic_device_power_state;
}
if (cb) {
cb(device, ret, context, arg);
}
return ret;
}
#endif /*CONFIG_DEVICE_POWER_MANAGEMENT*/
/**
*
* @brief Programs the interrupt redirection table
*
* This routine sets up the redirection table entry for the specified IRQ
* @param irq Virtualized IRQ
* @param vector Vector number
* @param flags Interrupt flags
*
* @return N/A
*/
void z_ioapic_irq_set(unsigned int irq, unsigned int vector, uint32_t flags)
{
uint32_t rteValue; /* value to copy into redirection table entry */
/* the delivery mode is determined by the flags passed from drivers */
rteValue = IOAPIC_INT_MASK | IOAPIC_LOGICAL |
(vector & IOAPIC_VEC_MASK) | flags;
ioApicRedSetHi(irq, DEFAULT_RTE_DEST);
ioApicRedSetLo(irq, rteValue);
}
/**
*
* @brief Program interrupt vector for specified irq
*
* The routine writes the interrupt vector in the Interrupt Redirection
* Table for specified irq number
*
* @param irq Interrupt number
* @param vector Vector number
* @return N/A
*/
void z_ioapic_int_vec_set(unsigned int irq, unsigned int vector)
{
IoApicRedUpdateLo(irq, vector, IOAPIC_VEC_MASK);
}
/**
*
* @brief Read a 32 bit IO APIC register
*
* This routine reads the specified IO APIC register using indirect addressing.
* @param offset Register offset (8 bits)
*
* @return register value
*/
static uint32_t __IoApicGet(int32_t offset)
{
uint32_t value; /* value */
unsigned int key; /* interrupt lock level */
/* lock interrupts to ensure indirect addressing works "atomically" */
key = irq_lock();
*((volatile uint32_t *) (IOAPIC_REG + IOAPIC_IND)) = (char)offset;
value = *((volatile uint32_t *)(IOAPIC_REG + IOAPIC_DATA));
irq_unlock(key);
return value;
}
/**
*
* @brief Write a 32 bit IO APIC register
*
* This routine writes the specified IO APIC register using indirect addressing.
*
* @param offset Register offset (8 bits)
* @param value Value to set the register
* @return N/A
*/
static void __IoApicSet(int32_t offset, uint32_t value)
{
unsigned int key; /* interrupt lock level */
/* lock interrupts to ensure indirect addressing works "atomically" */
key = irq_lock();
*(volatile uint32_t *)(IOAPIC_REG + IOAPIC_IND) = (char)offset;
*((volatile uint32_t *)(IOAPIC_REG + IOAPIC_DATA)) = value;
irq_unlock(key);
}
/**
*
* @brief Get low 32 bits of Redirection Table entry
*
* This routine reads the low-order 32 bits of a Redirection Table entry.
*
* @param irq INTIN number
* @return 32 low-order bits
*/
static uint32_t ioApicRedGetLo(unsigned int irq)
{
int32_t offset = IOAPIC_REDTBL + (irq << 1); /* register offset */
return __IoApicGet(offset);
}
/**
*
* @brief Set low 32 bits of Redirection Table entry
*
* This routine writes the low-order 32 bits of a Redirection Table entry.
*
* @param irq INTIN number
* @param lower32 Value to be written
* @return N/A
*/
static void ioApicRedSetLo(unsigned int irq, uint32_t lower32)
{
int32_t offset = IOAPIC_REDTBL + (irq << 1); /* register offset */
__IoApicSet(offset, lower32);
}
/**
*
* @brief Set high 32 bits of Redirection Table entry
*
* This routine writes the high-order 32 bits of a Redirection Table entry.
*
* @param irq INTIN number
* @param upper32 Value to be written
* @return N/A
*/
static void ioApicRedSetHi(unsigned int irq, uint32_t upper32)
{
int32_t offset = IOAPIC_REDTBL + (irq << 1) + 1; /* register offset */
__IoApicSet(offset, upper32);
}
/**
*
* @brief Modify low 32 bits of Redirection Table entry
*
* This routine modifies selected portions of the low-order 32 bits of a
* Redirection Table entry, as indicated by the associate bit mask.
*
* @param irq INTIN number
* @param value Value to be written
* @param mask Mask of bits to be modified
* @return N/A
*/
static void IoApicRedUpdateLo(unsigned int irq,
uint32_t value,
uint32_t mask)
{
ioApicRedSetLo(irq, (ioApicRedGetLo(irq) & ~mask) | (value & mask));
}
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
SYS_DEVICE_DEFINE("ioapic", ioapic_init, ioapic_device_ctrl, PRE_KERNEL_1,
CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
#else
SYS_INIT(ioapic_init, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
#endif