mirror of
https://github.com/zephyrproject-rtos/zephyr
synced 2025-08-04 10:16:11 +00:00
Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
204 lines
4.8 KiB
C
204 lines
4.8 KiB
C
/*
|
|
* Copyright (c) 2014-2015 Wind River Systems, Inc.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @brief Variables needed needed for system clock
|
|
*
|
|
*
|
|
* Declare variables used by both system timer device driver and kernel
|
|
* components that use timer functionality.
|
|
*/
|
|
|
|
#ifndef ZEPHYR_INCLUDE_SYS_CLOCK_H_
|
|
#define ZEPHYR_INCLUDE_SYS_CLOCK_H_
|
|
|
|
#include <sys/util.h>
|
|
#include <sys/dlist.h>
|
|
|
|
#include <toolchain.h>
|
|
#include <zephyr/types.h>
|
|
|
|
#include <sys/time_units.h>
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/**
|
|
* @addtogroup clock_apis
|
|
* @{
|
|
*/
|
|
|
|
typedef u32_t k_ticks_t;
|
|
|
|
#define K_TICKS_FOREVER ((k_ticks_t) -1)
|
|
|
|
#ifndef CONFIG_LEGACY_TIMEOUT_API
|
|
|
|
typedef struct {
|
|
k_ticks_t ticks;
|
|
} k_timeout_t;
|
|
|
|
/**
|
|
* @brief Compare timeouts for equality
|
|
*
|
|
* The k_timeout_t object is an opaque struct that should not be
|
|
* inspected by application code. This macro exists so that users can
|
|
* test timeout objects for equality with known constants
|
|
* (e.g. K_NO_WAIT and K_FOREVER) when implementing their own APIs in
|
|
* terms of Zephyr timeout constants.
|
|
*
|
|
* @return True if the timeout objects are identical
|
|
*/
|
|
#define K_TIMEOUT_EQ(a, b) ((a).ticks == (b).ticks)
|
|
|
|
#define Z_TIMEOUT_NO_WAIT ((k_timeout_t) {})
|
|
#define Z_TIMEOUT_TICKS(t) ((k_timeout_t) { .ticks = (t) })
|
|
#define Z_FOREVER Z_TIMEOUT_TICKS(K_TICKS_FOREVER)
|
|
#define Z_TIMEOUT_MS(t) Z_TIMEOUT_TICKS(k_ms_to_ticks_ceil32(MAX(t, 0)))
|
|
#define Z_TIMEOUT_US(t) Z_TIMEOUT_TICKS(k_us_to_ticks_ceil32(MAX(t, 0)))
|
|
#define Z_TIMEOUT_NS(t) Z_TIMEOUT_TICKS(k_ns_to_ticks_ceil32(MAX(t, 0)))
|
|
#define Z_TIMEOUT_CYC(t) Z_TIMEOUT_TICKS(k_cyc_to_ticks_ceil32(MAX(t, 0)))
|
|
|
|
#else
|
|
|
|
/* Legacy timeout API */
|
|
typedef s32_t k_timeout_t;
|
|
#define K_TIMEOUT_EQ(a, b) ((a) == (b))
|
|
#define Z_TIMEOUT_NO_WAIT 0
|
|
#define Z_TIMEOUT_TICKS(t) k_ticks_to_ms_ceil32(t)
|
|
#define Z_FOREVER K_TICKS_FOREVER
|
|
#define Z_TIMEOUT_MS(t) (t)
|
|
#define Z_TIMEOUT_US(t) ((t) * 1000)
|
|
#define Z_TIMEOUT_NS(t) ((t) * 1000000)
|
|
#define Z_TIMEOUT_CYC(t) k_cyc_to_ms_ceil32(MAX((t), 0))
|
|
|
|
#endif
|
|
|
|
/** @} */
|
|
|
|
#ifdef CONFIG_TICKLESS_KERNEL
|
|
extern int _sys_clock_always_on;
|
|
extern void z_enable_sys_clock(void);
|
|
#endif
|
|
|
|
#if defined(CONFIG_SYS_CLOCK_EXISTS) && \
|
|
(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC == 0)
|
|
#error "SYS_CLOCK_HW_CYCLES_PER_SEC must be non-zero!"
|
|
#endif
|
|
|
|
/* number of nsec per usec */
|
|
#define NSEC_PER_USEC 1000U
|
|
|
|
/* number of microseconds per millisecond */
|
|
#define USEC_PER_MSEC 1000U
|
|
|
|
/* number of milliseconds per second */
|
|
#define MSEC_PER_SEC 1000U
|
|
|
|
/* number of microseconds per second */
|
|
#define USEC_PER_SEC ((USEC_PER_MSEC) * (MSEC_PER_SEC))
|
|
|
|
/* number of nanoseconds per second */
|
|
#define NSEC_PER_SEC ((NSEC_PER_USEC) * (USEC_PER_MSEC) * (MSEC_PER_SEC))
|
|
|
|
|
|
/* kernel clocks */
|
|
|
|
/*
|
|
* We default to using 64-bit intermediates in timescale conversions,
|
|
* but if the HW timer cycles/sec, ticks/sec and ms/sec are all known
|
|
* to be nicely related, then we can cheat with 32 bits instead.
|
|
*/
|
|
|
|
#ifdef CONFIG_SYS_CLOCK_EXISTS
|
|
|
|
#if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME) || \
|
|
(MSEC_PER_SEC % CONFIG_SYS_CLOCK_TICKS_PER_SEC) || \
|
|
(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC % CONFIG_SYS_CLOCK_TICKS_PER_SEC)
|
|
#define _NEED_PRECISE_TICK_MS_CONVERSION
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#define __ticks_to_ms(t) __DEPRECATED_MACRO \
|
|
k_ticks_to_ms_floor64((u64_t)(t))
|
|
#define z_ms_to_ticks(t) \
|
|
((s32_t)k_ms_to_ticks_ceil32((u32_t)(t)))
|
|
#define __ticks_to_us(t) __DEPRECATED_MACRO \
|
|
((s32_t)k_ticks_to_us_floor32((u32_t)(t)))
|
|
#define z_us_to_ticks(t) __DEPRECATED_MACRO \
|
|
((s32_t)k_us_to_ticks_ceil32((u32_t)(t)))
|
|
#define sys_clock_hw_cycles_per_tick() __DEPRECATED_MACRO \
|
|
((int)k_ticks_to_cyc_floor32(1U))
|
|
#define SYS_CLOCK_HW_CYCLES_TO_NS64(t) __DEPRECATED_MACRO \
|
|
k_cyc_to_ns_floor64((u64_t)(t))
|
|
#define SYS_CLOCK_HW_CYCLES_TO_NS(t) __DEPRECATED_MACRO \
|
|
((u32_t)k_cyc_to_ns_floor64(t))
|
|
|
|
/* added tick needed to account for tick in progress */
|
|
#define _TICK_ALIGN 1
|
|
|
|
/*
|
|
* SYS_CLOCK_HW_CYCLES_TO_NS_AVG converts CPU clock cycles to nanoseconds
|
|
* and calculates the average cycle time
|
|
*/
|
|
#define SYS_CLOCK_HW_CYCLES_TO_NS_AVG(X, NCYCLES) \
|
|
(u32_t)(k_cyc_to_ns_floor64(X) / NCYCLES)
|
|
|
|
/**
|
|
* @defgroup clock_apis Kernel Clock APIs
|
|
* @ingroup kernel_apis
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @} end defgroup clock_apis
|
|
*/
|
|
|
|
/**
|
|
*
|
|
* @brief Return the lower part of the current system tick count
|
|
*
|
|
* @return the current system tick count
|
|
*
|
|
*/
|
|
u32_t z_tick_get_32(void);
|
|
|
|
/**
|
|
*
|
|
* @brief Return the current system tick count
|
|
*
|
|
* @return the current system tick count
|
|
*
|
|
*/
|
|
s64_t z_tick_get(void);
|
|
|
|
#ifndef CONFIG_SYS_CLOCK_EXISTS
|
|
#define z_tick_get() (0)
|
|
#define z_tick_get_32() (0)
|
|
#endif
|
|
|
|
u64_t z_timeout_end_calc(k_timeout_t timeout);
|
|
|
|
/* timeouts */
|
|
|
|
struct _timeout;
|
|
typedef void (*_timeout_func_t)(struct _timeout *t);
|
|
|
|
struct _timeout {
|
|
sys_dnode_t node;
|
|
s32_t dticks;
|
|
_timeout_func_t fn;
|
|
};
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* ZEPHYR_INCLUDE_SYS_CLOCK_H_ */
|