mirror of
https://github.com/zephyrproject-rtos/zephyr
synced 2025-09-01 14:32:21 +00:00
The scheduler priq implementation was taking advantage of a subtle behavior of the way the tree presents the order of its arguments (the node being inserted is always first). But it turns out the tree got that wrong in one spot. As this was subtle voodoo to begin with, it should have been documented first. Similarly add a little code to the test case to guarantee this in the future. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
584 lines
15 KiB
C
584 lines
15 KiB
C
/*
|
|
* Copyright (c) 2018 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/* These assertions are very useful when debugging the tree code
|
|
* itself, but produce significant performance degradation as they are
|
|
* checked many times per operation. Leave them off unless you're
|
|
* working on the rbtree code itself
|
|
*/
|
|
#define CHECK(n) /**/
|
|
/* #define CHECK(n) __ASSERT_NO_MSG(n) */
|
|
|
|
#include <kernel.h>
|
|
#include <misc/rb.h>
|
|
|
|
enum rb_color { RED = 0, BLACK = 1 };
|
|
|
|
static struct rbnode *get_child(struct rbnode *n, int side)
|
|
{
|
|
CHECK(n);
|
|
if (side) {
|
|
return n->children[1];
|
|
}
|
|
|
|
uintptr_t l = (uintptr_t) n->children[0];
|
|
|
|
l &= ~1ul;
|
|
return (struct rbnode *) l;
|
|
}
|
|
|
|
static void set_child(struct rbnode *n, int side, void *val)
|
|
{
|
|
CHECK(n);
|
|
if (side) {
|
|
n->children[1] = val;
|
|
} else {
|
|
uintptr_t old = (uintptr_t) n->children[0];
|
|
uintptr_t new = (uintptr_t) val;
|
|
|
|
n->children[0] = (void *) (new | (old & 1ul));
|
|
}
|
|
}
|
|
|
|
static enum rb_color get_color(struct rbnode *n)
|
|
{
|
|
CHECK(n);
|
|
return ((uintptr_t)n->children[0]) & 1ul;
|
|
}
|
|
|
|
static int is_black(struct rbnode *n)
|
|
{
|
|
return get_color(n) == BLACK;
|
|
}
|
|
|
|
static int is_red(struct rbnode *n)
|
|
{
|
|
return get_color(n) == RED;
|
|
}
|
|
|
|
static void set_color(struct rbnode *n, enum rb_color color)
|
|
{
|
|
CHECK(n);
|
|
|
|
uintptr_t *p = (void *) &n->children[0];
|
|
|
|
*p = (*p & ~1ul) | color;
|
|
}
|
|
|
|
/* Searches the tree down to a node that is either identical with the
|
|
* "node" argument or has an empty/leaf child pointer where "node"
|
|
* should be, leaving all nodes found in the resulting stack. Note
|
|
* that tree must not be empty and that stack should be allocated to
|
|
* contain at least tree->max_depth entries! Returns the number of
|
|
* entries pushed onto the stack.
|
|
*/
|
|
static int find_and_stack(struct rbtree *tree, struct rbnode *node,
|
|
struct rbnode **stack)
|
|
{
|
|
int sz = 0;
|
|
|
|
stack[sz++] = tree->root;
|
|
|
|
while (stack[sz - 1] != node) {
|
|
int side = tree->lessthan_fn(node, stack[sz - 1]) ? 0 : 1;
|
|
struct rbnode *ch = get_child(stack[sz - 1], side);
|
|
|
|
if (ch) {
|
|
stack[sz++] = ch;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return sz;
|
|
}
|
|
|
|
struct rbnode *_rb_get_minmax(struct rbtree *tree, int side)
|
|
{
|
|
struct rbnode *n;
|
|
|
|
for (n = tree->root; n && get_child(n, side); n = get_child(n, side))
|
|
;
|
|
return n;
|
|
}
|
|
|
|
static int get_side(struct rbnode *parent, struct rbnode *child)
|
|
{
|
|
CHECK(get_child(parent, 0) == child || get_child(parent, 1) == child);
|
|
|
|
return get_child(parent, 1) == child ? 1 : 0;
|
|
}
|
|
|
|
/* Swaps the position of the two nodes at the top of the provided
|
|
* stack, modifying the stack accordingly. Does not change the color
|
|
* of either node. That is, it effects the following transition (or
|
|
* its mirror if N is on the other side of P, of course):
|
|
*
|
|
* P N
|
|
* N c --> a P
|
|
* a b b c
|
|
*
|
|
*/
|
|
static void rotate(struct rbnode **stack, int stacksz)
|
|
{
|
|
CHECK(stacksz >= 2);
|
|
|
|
struct rbnode *parent = stack[stacksz - 2];
|
|
struct rbnode *child = stack[stacksz - 1];
|
|
int side = get_side(parent, child);
|
|
struct rbnode *a = get_child(child, side);
|
|
struct rbnode *b = get_child(child, !side);
|
|
|
|
if (stacksz >= 3) {
|
|
struct rbnode *grandparent = stack[stacksz - 3];
|
|
|
|
set_child(grandparent, get_side(grandparent, parent), child);
|
|
}
|
|
|
|
set_child(child, side, a);
|
|
set_child(child, !side, parent);
|
|
set_child(parent, side, b);
|
|
stack[stacksz - 2] = child;
|
|
stack[stacksz - 1] = parent;
|
|
}
|
|
|
|
/* The node at the top of the provided stack is red, and its parent is
|
|
* too. Iteratively fix the tree so it becomes a valid red black tree
|
|
* again
|
|
*/
|
|
static void fix_extra_red(struct rbnode **stack, int stacksz)
|
|
{
|
|
while (stacksz > 1) {
|
|
struct rbnode *node = stack[stacksz - 1];
|
|
struct rbnode *parent = stack[stacksz - 2];
|
|
|
|
/* Correct child colors are a precondition of the loop */
|
|
CHECK(!get_child(node, 0) || is_black(get_child(node, 0)));
|
|
CHECK(!get_child(node, 1) || is_black(get_child(node, 1)));
|
|
|
|
if (is_black(parent)) {
|
|
return;
|
|
}
|
|
|
|
/* We are guaranteed to have a grandparent if our
|
|
* parent is red, as red nodes cannot be the root
|
|
*/
|
|
CHECK(stacksz >= 2);
|
|
|
|
struct rbnode *grandparent = stack[stacksz - 3];
|
|
int side = get_side(grandparent, parent);
|
|
struct rbnode *aunt = get_child(grandparent, !side);
|
|
|
|
if (aunt && is_red(aunt)) {
|
|
set_color(grandparent, RED);
|
|
set_color(parent, BLACK);
|
|
set_color(aunt, BLACK);
|
|
|
|
/* We colored the grandparent red, which might
|
|
* have a red parent, so continue iterating
|
|
* from there.
|
|
*/
|
|
stacksz -= 2;
|
|
continue;
|
|
}
|
|
|
|
/* We can rotate locally to fix the whole tree. First
|
|
* make sure that node is on the same side of parent
|
|
* as parent is of grandparent.
|
|
*/
|
|
int parent_side = get_side(parent, node);
|
|
|
|
if (parent_side != side) {
|
|
rotate(stack, stacksz);
|
|
node = stack[stacksz - 1];
|
|
}
|
|
|
|
/* Rotate the grandparent with parent, swapping colors */
|
|
rotate(stack, stacksz - 1);
|
|
set_color(stack[stacksz - 3], BLACK);
|
|
set_color(stack[stacksz - 2], RED);
|
|
return;
|
|
}
|
|
|
|
/* If we exit the loop, it's because our node is now the root,
|
|
* which must be black.
|
|
*/
|
|
set_color(stack[0], BLACK);
|
|
}
|
|
|
|
void rb_insert(struct rbtree *tree, struct rbnode *node)
|
|
{
|
|
set_child(node, 0, NULL);
|
|
set_child(node, 1, NULL);
|
|
|
|
if (!tree->root) {
|
|
tree->root = node;
|
|
tree->max_depth = 1;
|
|
set_color(node, BLACK);
|
|
return;
|
|
}
|
|
|
|
struct rbnode *stack[tree->max_depth + 1];
|
|
|
|
int stacksz = find_and_stack(tree, node, stack);
|
|
|
|
struct rbnode *parent = stack[stacksz - 1];
|
|
|
|
int side = !tree->lessthan_fn(node, parent);
|
|
|
|
set_child(parent, side, node);
|
|
set_color(node, RED);
|
|
|
|
stack[stacksz++] = node;
|
|
fix_extra_red(stack, stacksz);
|
|
|
|
if (stacksz > tree->max_depth) {
|
|
tree->max_depth = stacksz;
|
|
}
|
|
|
|
/* We may have rotated up into the root! */
|
|
tree->root = stack[0];
|
|
CHECK(is_black(tree->root));
|
|
}
|
|
|
|
/* Called for a node N (at the top of the stack) which after a
|
|
* deletion operation is "missing a black" in its subtree. By
|
|
* construction N must be black (because if it was red it would be
|
|
* trivially fixed by recoloring and we wouldn't be here). Fixes up
|
|
* the tree to preserve red/black rules. The "null_node" pointer is
|
|
* for situations where we are removing a childless black node. The
|
|
* tree munging needs a real node for simplicity, so we use it and
|
|
* then clean it up (replace it with a simple NULL child in the
|
|
* parent) when finished.
|
|
*/
|
|
static void fix_missing_black(struct rbnode **stack, int stacksz,
|
|
struct rbnode *null_node)
|
|
{
|
|
/* Loop upward until we reach the root */
|
|
while (stacksz > 1) {
|
|
struct rbnode *c0, *c1, *inner, *outer;
|
|
struct rbnode *n = stack[stacksz - 1];
|
|
struct rbnode *parent = stack[stacksz - 2];
|
|
int n_side = get_side(parent, n);
|
|
struct rbnode *sib = get_child(parent, !n_side);
|
|
|
|
CHECK(is_black(n));
|
|
|
|
/* Guarantee the sibling is black, rotating N down a
|
|
* level if needed (after rotate() our parent is the
|
|
* child of our previous-sibling, so N is lower in the
|
|
* tree)
|
|
*/
|
|
if (!is_black(sib)) {
|
|
stack[stacksz - 1] = sib;
|
|
rotate(stack, stacksz);
|
|
set_color(parent, RED);
|
|
set_color(sib, BLACK);
|
|
stack[stacksz++] = n;
|
|
|
|
parent = stack[stacksz - 2];
|
|
sib = get_child(parent, !n_side);
|
|
}
|
|
|
|
CHECK(sib);
|
|
|
|
/* Cases where the sibling has only black children
|
|
* have simple resolutions
|
|
*/
|
|
c0 = get_child(sib, 0);
|
|
c1 = get_child(sib, 1);
|
|
if ((!c0 || is_black(c0)) && (!c1 || is_black(c1))) {
|
|
if (n == null_node) {
|
|
set_child(parent, n_side, NULL);
|
|
}
|
|
|
|
set_color(sib, RED);
|
|
if (is_black(parent)) {
|
|
/* Balance the sibling's subtree by
|
|
* coloring it red, then our parent
|
|
* has a missing black so iterate
|
|
* upward
|
|
*/
|
|
stacksz--;
|
|
continue;
|
|
} else {
|
|
/* Recoloring makes the whole tree OK */
|
|
set_color(parent, BLACK);
|
|
return;
|
|
}
|
|
}
|
|
|
|
CHECK((c0 && is_red(c0)) || (c1 && is_red(c1)));
|
|
|
|
/* We know sibling has at least one red child. Fix it
|
|
* so that the far/outer position (i.e. on the
|
|
* opposite side from N) is definitely red.
|
|
*/
|
|
outer = get_child(sib, !n_side);
|
|
if (!(outer && is_red(outer))) {
|
|
inner = get_child(sib, n_side);
|
|
|
|
stack[stacksz - 1] = sib;
|
|
stack[stacksz++] = inner;
|
|
rotate(stack, stacksz);
|
|
set_color(sib, RED);
|
|
set_color(inner, BLACK);
|
|
|
|
/* Restore stack state to have N on the top
|
|
* and make sib reflect the new sibling
|
|
*/
|
|
sib = stack[stacksz - 2];
|
|
outer = get_child(sib, !n_side);
|
|
stack[stacksz - 2] = n;
|
|
stacksz--;
|
|
}
|
|
|
|
/* Finally, the sibling must have a red child in the
|
|
* far/outer slot. We can rotate sib with our parent
|
|
* and recolor to produce a valid tree.
|
|
*/
|
|
CHECK(is_red(outer));
|
|
set_color(sib, get_color(parent));
|
|
set_color(parent, BLACK);
|
|
set_color(outer, BLACK);
|
|
stack[stacksz - 1] = sib;
|
|
rotate(stack, stacksz);
|
|
if (n == null_node) {
|
|
set_child(parent, n_side, NULL);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
void rb_remove(struct rbtree *tree, struct rbnode *node)
|
|
{
|
|
struct rbnode *stack[tree->max_depth + 1], *tmp;
|
|
|
|
int stacksz = find_and_stack(tree, node, stack);
|
|
|
|
if (node != stack[stacksz - 1]) {
|
|
return;
|
|
}
|
|
|
|
/* We can only remove a node with zero or one child, if we
|
|
* have two then pick the "biggest" child of side 0 (smallest
|
|
* of 1 would work too) and swap our spot in the tree with
|
|
* that one
|
|
*/
|
|
if (get_child(node, 0) && get_child(node, 1)) {
|
|
int stacksz0 = stacksz;
|
|
struct rbnode *hiparent, *loparent;
|
|
struct rbnode *node2 = get_child(node, 0);
|
|
|
|
hiparent = stacksz > 1 ? stack[stacksz - 2] : NULL;
|
|
stack[stacksz++] = node2;
|
|
while (get_child(node2, 1)) {
|
|
node2 = get_child(node2, 1);
|
|
stack[stacksz++] = node2;
|
|
}
|
|
|
|
loparent = stack[stacksz - 2];
|
|
|
|
/* Now swap the position of node/node2 in the tree.
|
|
* Design note: this is a spot where being an
|
|
* intrusive data structure hurts us fairly badly.
|
|
* The trees you see in textbooks do this by swapping
|
|
* the "data" pointers between the two nodes, but we
|
|
* have a few special cases to check. In principle
|
|
* this works by swapping the child pointers between
|
|
* the nodes and retargetting the nodes pointing to
|
|
* them from their parents, but: (1) the upper node
|
|
* may be the root of the tree and not have a parent,
|
|
* and (2) the lower node may be a direct child of the
|
|
* upper node. Remember to swap the color bits of the
|
|
* two nodes also. And of course we don't have parent
|
|
* pointers, so the stack tracking this structure
|
|
* needs to be swapped too!
|
|
*/
|
|
if (hiparent) {
|
|
set_child(hiparent, get_side(hiparent, node), node2);
|
|
} else {
|
|
tree->root = node2;
|
|
}
|
|
|
|
if (loparent == node) {
|
|
set_child(node, 0, get_child(node2, 0));
|
|
set_child(node2, 0, node);
|
|
} else {
|
|
set_child(loparent, get_side(loparent, node2), node);
|
|
tmp = get_child(node, 0);
|
|
set_child(node, 0, get_child(node2, 0));
|
|
set_child(node2, 0, tmp);
|
|
}
|
|
|
|
set_child(node2, 1, get_child(node, 1));
|
|
set_child(node, 1, NULL);
|
|
|
|
tmp = stack[stacksz0 - 1];
|
|
stack[stacksz0 - 1] = stack[stacksz - 1];
|
|
stack[stacksz - 1] = tmp;
|
|
|
|
int ctmp = get_color(node);
|
|
|
|
set_color(node, get_color(node2));
|
|
set_color(node2, ctmp);
|
|
}
|
|
|
|
CHECK(!get_child(node, 0) || !get_child(node, 1));
|
|
|
|
struct rbnode *child = get_child(node, 0);
|
|
|
|
if (!child) {
|
|
child = get_child(node, 1);
|
|
}
|
|
|
|
/* Removing the root */
|
|
if (stacksz < 2) {
|
|
tree->root = child;
|
|
if (child) {
|
|
set_color(child, BLACK);
|
|
} else {
|
|
tree->max_depth = 0;
|
|
}
|
|
return;
|
|
}
|
|
|
|
struct rbnode *parent = stack[stacksz - 2];
|
|
|
|
/* Special case: if the node to be removed is childless, then
|
|
* we leave it in place while we do the missing black
|
|
* rotations, which will replace it with a proper NULL when
|
|
* they isolate it.
|
|
*/
|
|
if (!child) {
|
|
if (is_black(node)) {
|
|
fix_missing_black(stack, stacksz, node);
|
|
} else {
|
|
/* Red childless nodes can just be dropped */
|
|
set_child(parent, get_side(parent, node), NULL);
|
|
}
|
|
} else {
|
|
set_child(parent, get_side(parent, node), child);
|
|
|
|
/* Check colors, if one was red (at least one must have been
|
|
* black in a valid tree), then we're done. Otherwise we have
|
|
* a missing black we need to fix
|
|
*/
|
|
if (is_red(node) || is_red(child)) {
|
|
set_color(child, BLACK);
|
|
} else {
|
|
stack[stacksz - 1] = child;
|
|
fix_missing_black(stack, stacksz, NULL);
|
|
}
|
|
}
|
|
|
|
/* We may have rotated up into the root! */
|
|
tree->root = stack[0];
|
|
}
|
|
|
|
void _rb_walk(struct rbnode *node, rb_visit_t visit_fn, void *cookie)
|
|
{
|
|
if (node) {
|
|
_rb_walk(get_child(node, 0), visit_fn, cookie);
|
|
visit_fn(node, cookie);
|
|
_rb_walk(get_child(node, 1), visit_fn, cookie);
|
|
}
|
|
}
|
|
|
|
struct rbnode *_rb_child(struct rbnode *node, int side)
|
|
{
|
|
return get_child(node, side);
|
|
}
|
|
|
|
int _rb_is_black(struct rbnode *node)
|
|
{
|
|
return is_black(node);
|
|
}
|
|
|
|
int rb_contains(struct rbtree *tree, struct rbnode *node)
|
|
{
|
|
struct rbnode *n = tree->root;
|
|
|
|
while (n && n != node) {
|
|
n = get_child(n, tree->lessthan_fn(n, node));
|
|
}
|
|
|
|
return n == node;
|
|
}
|
|
|
|
/* Pushes the node and its chain of left-side children onto the stack
|
|
* in the foreach struct, returning the last node, which is the next
|
|
* node to iterate. By construction node will always be a right child
|
|
* or the root, so is_left must be false.
|
|
*/
|
|
static inline struct rbnode *stack_left_limb(struct rbnode *n,
|
|
struct _rb_foreach *f)
|
|
{
|
|
f->top++;
|
|
f->stack[f->top] = n;
|
|
f->is_left[f->top] = 0;
|
|
|
|
while ((n = get_child(n, 0))) {
|
|
f->top++;
|
|
f->stack[f->top] = n;
|
|
f->is_left[f->top] = 1;
|
|
}
|
|
|
|
return f->stack[f->top];
|
|
}
|
|
|
|
/* The foreach tracking works via a dynamic stack allocated via
|
|
* alloca(). The current node is found in stack[top] (and its parent
|
|
* is thus stack[top-1]). The side of each stacked node from its
|
|
* parent is stored in is_left[] (i.e. if is_left[top] is true, then
|
|
* node/stack[top] is the left child of stack[top-1]). The special
|
|
* case of top == -1 indicates that the stack is uninitialized and we
|
|
* need to push an initial stack starting at the root.
|
|
*/
|
|
struct rbnode *_rb_foreach_next(struct rbtree *tree, struct _rb_foreach *f)
|
|
{
|
|
struct rbnode *n;
|
|
|
|
if (!tree->root) {
|
|
return NULL;
|
|
}
|
|
|
|
/* Initialization condition, pick the leftmost child of the
|
|
* root as our first node, initializing the stack on the way.
|
|
*/
|
|
if (f->top == -1) {
|
|
return stack_left_limb(tree->root, f);
|
|
}
|
|
|
|
/* The next child from a given node is the leftmost child of
|
|
* it's right subtree if it has a right child
|
|
*/
|
|
n = get_child(f->stack[f->top], 1);
|
|
if (n) {
|
|
return stack_left_limb(n, f);
|
|
}
|
|
|
|
/* Otherwise if the node is a left child of its parent, the
|
|
* next node is the parent (note that the root is stacked
|
|
* above with is_left set to 0, so this condition still works
|
|
* even if node has no parent).
|
|
*/
|
|
if (f->is_left[f->top]) {
|
|
return f->stack[--f->top];
|
|
}
|
|
|
|
/* If we had no left tree and are a right child then our
|
|
* parent was already walked, so walk up the stack looking for
|
|
* a left child (whose parent is unwalked, and thus next).
|
|
*/
|
|
while (f->top > 0 && !f->is_left[f->top]) {
|
|
f->top--;
|
|
}
|
|
|
|
f->top--;
|
|
return f->top >= 0 ? f->stack[f->top] : NULL;
|
|
}
|