zephyr/kernel/microkernel/k_task_monitor.c
Daniel Leung 851c6f8f60 microkernel: introduce private event objects
This patch enables defining microkernel events within source code.
This is similar to other private kernel object patches.

The test has been modified a little bit due to the fact that
the event ID is now a memory address, instead of numeric ID.

Change-Id: Ie3c8d4f4e459d9c631e50bb242cf7a05ca8ea82c
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
2016-02-05 20:24:35 -05:00

113 lines
2.8 KiB
C

/* k_task_monitor.c - microkernel task monitoring subsystem */
/*
* Copyright (c) 1997-2010, 2013-2015 Wind River Systems, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef CONFIG_TASK_MONITOR
#include <micro_private.h>
#include <microkernel/ticks.h>
#include <drivers/system_timer.h>
#include <toolchain.h>
#include <sections.h>
static struct k_mrec __noinit k_monitor_buff[CONFIG_TASK_MONITOR_CAPACITY];
static const int k_monitor_capacity = CONFIG_TASK_MONITOR_CAPACITY;
const int _k_monitor_mask = CONFIG_TASK_MONITOR_MASK;
static struct k_mrec *k_monitor_wptr = k_monitor_buff;
static int k_monitor_nrec;
static int K_monitor_wind;
k_task_monitor_hook_t _k_task_switch_callback;
extern kevent_t _k_event_list_start[];
extern kevent_t _k_event_list_end[];
void task_monitor_hook_set(k_task_monitor_hook_t func)
{
_k_task_switch_callback = func;
}
void _k_task_monitor(struct k_task *X, uint32_t D)
{
#ifdef CONFIG_TASK_DEBUG
if (!_k_debug_halt)
#endif
{
k_monitor_wptr->time = _sys_clock_cycle_get();
k_monitor_wptr->data1 = X->id;
k_monitor_wptr->data2 = D;
if (++K_monitor_wind == k_monitor_capacity) {
K_monitor_wind = 0;
k_monitor_wptr = k_monitor_buff;
} else {
++k_monitor_wptr;
}
if (k_monitor_nrec < k_monitor_capacity) {
k_monitor_nrec++;
}
}
if ((_k_task_switch_callback != NULL) && (D == 0)) {
(_k_task_switch_callback)(X->id, _sys_clock_cycle_get());
}
}
void _k_task_monitor_args(struct k_args *A)
{
#ifdef CONFIG_TASK_DEBUG
if (!_k_debug_halt)
#endif
{
k_monitor_wptr->time = _sys_clock_cycle_get();
if (((kevent_t)A >= (kevent_t)_k_event_list_start) &&
((kevent_t)A < (kevent_t)_k_event_list_end)) {
k_monitor_wptr->data2 = MO_EVENT | (uint32_t)A;
} else {
k_monitor_wptr->data1 = _k_current_task->id;
k_monitor_wptr->data2 = MO_LCOMM | A->Comm;
}
if (++K_monitor_wind == k_monitor_capacity) {
K_monitor_wind = 0;
k_monitor_wptr = k_monitor_buff;
} else {
++k_monitor_wptr;
}
if (k_monitor_nrec < k_monitor_capacity) {
k_monitor_nrec++;
}
}
}
void _k_task_monitor_read(struct k_args *A)
{
A->args.z4.nrec = k_monitor_nrec;
if (A->args.z4.rind < k_monitor_nrec) {
int i = K_monitor_wind - k_monitor_nrec + A->args.z4.rind;
if (i < 0) {
i += k_monitor_capacity;
}
A->args.z4.mrec = k_monitor_buff[i];
}
}
#endif /* CONFIG_TASK_MONITOR */