zephyr/kernel/timeout.c
Pawel Dunaj baea22407d kernel: Always set clock expiry with sync with timeout module
System must not set the clock expiry via backdoor as it may
effect in unbound time drift of all scheduled timeouts.

Fixes: #11502

Signed-off-by: Pawel Dunaj <pawel.dunaj@nordicsemi.no>
2018-11-26 12:24:59 +01:00

257 lines
4.6 KiB
C

/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <timeout_q.h>
#include <drivers/system_timer.h>
#include <sys_clock.h>
#include <spinlock.h>
#include <ksched.h>
#include <syscall_handler.h>
#define LOCKED(lck) for (k_spinlock_key_t __i = {}, \
__key = k_spin_lock(lck); \
!__i.key; \
k_spin_unlock(lck, __key), __i.key = 1)
static u64_t curr_tick;
static sys_dlist_t timeout_list = SYS_DLIST_STATIC_INIT(&timeout_list);
static struct k_spinlock timeout_lock;
static bool can_wait_forever;
/* Cycles left to process in the currently-executing z_clock_announce() */
static int announce_remaining;
#if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME)
int z_clock_hw_cycles_per_sec = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
#endif
static struct _timeout *first(void)
{
sys_dnode_t *t = sys_dlist_peek_head(&timeout_list);
return t == NULL ? NULL : CONTAINER_OF(t, struct _timeout, node);
}
static struct _timeout *next(struct _timeout *t)
{
sys_dnode_t *n = sys_dlist_peek_next(&timeout_list, &t->node);
return n == NULL ? NULL : CONTAINER_OF(n, struct _timeout, node);
}
static void remove_timeout(struct _timeout *t)
{
if (next(t) != NULL) {
next(t)->dticks += t->dticks;
}
sys_dlist_remove(&t->node);
t->dticks = _INACTIVE;
}
static s32_t elapsed(void)
{
return announce_remaining == 0 ? z_clock_elapsed() : 0;
}
void _add_timeout(struct _timeout *to, _timeout_func_t fn, s32_t ticks)
{
__ASSERT(to->dticks < 0, "");
to->fn = fn;
ticks = max(1, ticks);
LOCKED(&timeout_lock) {
struct _timeout *t;
to->dticks = ticks + elapsed();
for (t = first(); t != NULL; t = next(t)) {
__ASSERT(t->dticks >= 0, "");
if (t->dticks > to->dticks) {
t->dticks -= to->dticks;
sys_dlist_insert_before(&timeout_list,
&t->node, &to->node);
break;
}
to->dticks -= t->dticks;
}
if (t == NULL) {
sys_dlist_append(&timeout_list, &to->node);
}
if (to == first()) {
z_clock_set_timeout(_get_next_timeout_expiry(), false);
}
}
}
int _abort_timeout(struct _timeout *to)
{
int ret = _INACTIVE;
LOCKED(&timeout_lock) {
if (to->dticks != _INACTIVE) {
remove_timeout(to);
ret = 0;
}
}
return ret;
}
s32_t z_timeout_remaining(struct _timeout *to)
{
s32_t ticks = 0;
if (to->dticks == _INACTIVE) {
return 0;
}
LOCKED(&timeout_lock) {
for (struct _timeout *t = first(); t != NULL; t = next(t)) {
ticks += t->dticks;
if (to == t) {
break;
}
}
}
return ticks;
}
void z_clock_announce(s32_t ticks)
{
struct _timeout *t = NULL;
#ifdef CONFIG_TIMESLICING
z_time_slice(ticks);
#endif
announce_remaining = ticks;
while (true) {
LOCKED(&timeout_lock) {
t = first();
if (t != NULL) {
if (t->dticks <= announce_remaining) {
announce_remaining -= t->dticks;
curr_tick += t->dticks;
t->dticks = 0;
remove_timeout(t);
} else {
t->dticks -= announce_remaining;
t = NULL;
}
}
}
if (t == NULL) {
break;
}
t->fn(t);
}
LOCKED(&timeout_lock) {
curr_tick += announce_remaining;
announce_remaining = 0;
z_clock_set_timeout(_get_next_timeout_expiry(), false);
}
}
s32_t _get_next_timeout_expiry(void)
{
s32_t ret = 0;
int maxw = can_wait_forever ? K_FOREVER : INT_MAX;
LOCKED(&timeout_lock) {
struct _timeout *to = first();
ret = to == NULL ? maxw : max(0, to->dticks - elapsed());
}
#ifdef CONFIG_TIMESLICING
if (_current_cpu->slice_ticks && _current_cpu->slice_ticks < ret) {
ret = _current_cpu->slice_ticks;
}
#endif
return ret;
}
void z_set_timeout_expiry(s32_t ticks, bool idle)
{
LOCKED(&timeout_lock) {
int next = _get_next_timeout_expiry();
if ((next == K_FOREVER) || (ticks < next)) {
z_clock_set_timeout(ticks, idle);
}
}
}
int k_enable_sys_clock_always_on(void)
{
int ret = !can_wait_forever;
can_wait_forever = 0;
return ret;
}
void k_disable_sys_clock_always_on(void)
{
can_wait_forever = 1;
}
s64_t z_tick_get(void)
{
u64_t t = 0;
LOCKED(&timeout_lock) {
t = curr_tick + z_clock_elapsed();
}
return t;
}
u32_t z_tick_get_32(void)
{
#ifdef CONFIG_TICKLESS_KERNEL
return (u32_t)z_tick_get();
#else
return (u32_t)curr_tick;
#endif
}
u32_t _impl_k_uptime_get_32(void)
{
return __ticks_to_ms(z_tick_get_32());
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_uptime_get_32)
{
return _impl_k_uptime_get_32();
}
#endif
s64_t _impl_k_uptime_get(void)
{
return __ticks_to_ms(z_tick_get());
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_uptime_get, ret_p)
{
u64_t *ret = (u64_t *)ret_p;
Z_OOPS(Z_SYSCALL_MEMORY_WRITE(ret, sizeof(*ret)));
*ret = _impl_k_uptime_get();
return 0;
}
#endif