mirror of
https://github.com/zephyrproject-rtos/zephyr
synced 2025-08-29 18:36:58 +00:00
We make a policy change here: all threads are members of a memory domain, never NULL. We introduce a default memory domain for threads that haven't been assigned to or inherited another one. Primary motivation for this change is better MMU support, as one common configuration will be to maintain page tables at the memory domain level. Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
206 lines
5.1 KiB
C
206 lines
5.1 KiB
C
/*
|
|
* Copyright (c) 2018 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
#ifndef ZEPHYR_KERNEL_INCLUDE_KSWAP_H_
|
|
#define ZEPHYR_KERNEL_INCLUDE_KSWAP_H_
|
|
|
|
#include <ksched.h>
|
|
#include <spinlock.h>
|
|
#include <kernel_arch_func.h>
|
|
|
|
#ifdef CONFIG_STACK_SENTINEL
|
|
extern void z_check_stack_sentinel(void);
|
|
#else
|
|
#define z_check_stack_sentinel() /**/
|
|
#endif
|
|
|
|
/* In SMP, the irq_lock() is a spinlock which is implicitly released
|
|
* and reacquired on context switch to preserve the existing
|
|
* semantics. This means that whenever we are about to return to a
|
|
* thread (via either z_swap() or interrupt/exception return!) we need
|
|
* to restore the lock state to whatever the thread's counter
|
|
* expects.
|
|
*/
|
|
void z_smp_reacquire_global_lock(struct k_thread *thread);
|
|
void z_smp_release_global_lock(struct k_thread *thread);
|
|
|
|
/* context switching and scheduling-related routines */
|
|
#ifdef CONFIG_USE_SWITCH
|
|
|
|
/* There is an unavoidable SMP race when threads swap -- their thread
|
|
* record is in the queue (and visible to other CPUs) before
|
|
* arch_switch() finishes saving state. We must spin for the switch
|
|
* handle before entering a new thread. See docs on arch_switch().
|
|
*
|
|
* Note: future SMP architectures may need a fence/barrier or cache
|
|
* invalidation here. Current ones don't, and sadly Zephyr doesn't
|
|
* have a framework for that yet.
|
|
*/
|
|
static inline void wait_for_switch(struct k_thread *thread)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
volatile void **shp = (void *)&thread->switch_handle;
|
|
|
|
while (*shp == NULL) {
|
|
k_busy_wait(1);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* New style context switching. arch_switch() is a lower level
|
|
* primitive that doesn't know about the scheduler or return value.
|
|
* Needed for SMP, where the scheduler requires spinlocking that we
|
|
* don't want to have to do in per-architecture assembly.
|
|
*
|
|
* Note that is_spinlock is a compile-time construct which will be
|
|
* optimized out when this function is expanded.
|
|
*/
|
|
static ALWAYS_INLINE unsigned int do_swap(unsigned int key,
|
|
struct k_spinlock *lock,
|
|
int is_spinlock)
|
|
{
|
|
ARG_UNUSED(lock);
|
|
struct k_thread *new_thread, *old_thread;
|
|
|
|
#ifdef CONFIG_EXECUTION_BENCHMARKING
|
|
extern void read_timer_start_of_swap(void);
|
|
read_timer_start_of_swap();
|
|
#endif
|
|
|
|
old_thread = _current;
|
|
|
|
z_check_stack_sentinel();
|
|
|
|
if (is_spinlock) {
|
|
k_spin_release(lock);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* Null out the switch handle, see wait_for_switch() above.
|
|
* Note that we set it back to a non-null value if we are not
|
|
* switching! The value itself doesn't matter, because by
|
|
* definition _current is running and has no saved state.
|
|
*/
|
|
volatile void **shp = (void *)&old_thread->switch_handle;
|
|
|
|
*shp = NULL;
|
|
#endif
|
|
|
|
new_thread = z_get_next_ready_thread();
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (new_thread == old_thread) {
|
|
*shp = old_thread;
|
|
}
|
|
#endif
|
|
|
|
if (new_thread != old_thread) {
|
|
#ifdef CONFIG_TIMESLICING
|
|
z_reset_time_slice();
|
|
#endif
|
|
|
|
old_thread->swap_retval = -EAGAIN;
|
|
|
|
#ifdef CONFIG_SMP
|
|
_current_cpu->swap_ok = 0;
|
|
|
|
new_thread->base.cpu = arch_curr_cpu()->id;
|
|
|
|
if (!is_spinlock) {
|
|
z_smp_release_global_lock(new_thread);
|
|
}
|
|
#endif
|
|
sys_trace_thread_switched_out();
|
|
_current_cpu->current = new_thread;
|
|
wait_for_switch(new_thread);
|
|
arch_switch(new_thread->switch_handle,
|
|
&old_thread->switch_handle);
|
|
sys_trace_thread_switched_in();
|
|
}
|
|
|
|
if (is_spinlock) {
|
|
arch_irq_unlock(key);
|
|
} else {
|
|
irq_unlock(key);
|
|
}
|
|
|
|
return _current->swap_retval;
|
|
}
|
|
|
|
static inline int z_swap_irqlock(unsigned int key)
|
|
{
|
|
return do_swap(key, NULL, 0);
|
|
}
|
|
|
|
static inline int z_swap(struct k_spinlock *lock, k_spinlock_key_t key)
|
|
{
|
|
return do_swap(key.key, lock, 1);
|
|
}
|
|
|
|
static inline void z_swap_unlocked(void)
|
|
{
|
|
struct k_spinlock lock = {};
|
|
k_spinlock_key_t key = k_spin_lock(&lock);
|
|
|
|
(void) z_swap(&lock, key);
|
|
}
|
|
|
|
#else /* !CONFIG_USE_SWITCH */
|
|
|
|
extern int arch_swap(unsigned int key);
|
|
|
|
static inline int z_swap_irqlock(unsigned int key)
|
|
{
|
|
int ret;
|
|
z_check_stack_sentinel();
|
|
ret = arch_swap(key);
|
|
return ret;
|
|
}
|
|
|
|
/* If !USE_SWITCH, then spinlocks are guaranteed degenerate as we
|
|
* can't be in SMP. The k_spin_release() call is just for validation
|
|
* handling.
|
|
*/
|
|
static ALWAYS_INLINE int z_swap(struct k_spinlock *lock, k_spinlock_key_t key)
|
|
{
|
|
k_spin_release(lock);
|
|
return z_swap_irqlock(key.key);
|
|
}
|
|
|
|
static inline void z_swap_unlocked(void)
|
|
{
|
|
(void) z_swap_irqlock(arch_irq_lock());
|
|
}
|
|
|
|
#endif /* !CONFIG_USE_SWITCH */
|
|
|
|
/**
|
|
* Set up a "dummy" thread, used at early initialization to launch the
|
|
* first thread on a CPU.
|
|
*
|
|
* Needs to set enough fields such that the context switching code can
|
|
* use it to properly store state, which will just be discarded.
|
|
*
|
|
* The memory of the dummy thread can be completely uninitialized.
|
|
*/
|
|
static inline void z_dummy_thread_init(struct k_thread *dummy_thread)
|
|
{
|
|
dummy_thread->base.thread_state = _THREAD_DUMMY;
|
|
#ifdef CONFIG_SCHED_CPU_MASK
|
|
dummy_thread->base.cpu_mask = -1;
|
|
#endif
|
|
dummy_thread->base.user_options = K_ESSENTIAL;
|
|
#ifdef CONFIG_THREAD_STACK_INFO
|
|
dummy_thread->stack_info.start = 0U;
|
|
dummy_thread->stack_info.size = 0U;
|
|
#endif
|
|
#ifdef CONFIG_USERSPACE
|
|
dummy_thread->mem_domain_info.mem_domain = &k_mem_domain_default;
|
|
#endif
|
|
|
|
_current_cpu->current = dummy_thread;
|
|
}
|
|
#endif /* ZEPHYR_KERNEL_INCLUDE_KSWAP_H_ */
|