mirror of
https://github.com/zephyrproject-rtos/zephyr
synced 2025-08-09 22:16:29 +00:00
All system calls made from userspace which involve pointers to kernel objects (including device drivers) will need to have those pointers validated; userspace should never be able to crash the kernel by passing it garbage. The actual validation with _k_object_validate() will be in the system call receiver code, which doesn't exist yet. - CONFIG_USERSPACE introduced. We are somewhat far away from having an end-to-end implementation, but at least need a Kconfig symbol to guard the incoming code with. Formal documentation doesn't exist yet either, but will appear later down the road once the implementation is mostly finalized. - In the memory region for RAM, the data section has been moved last, past bss and noinit. This ensures that inserting generated tables with addresses of kernel objects does not change the addresses of those objects (which would make the table invalid) - The DWARF debug information in the generated ELF binary is parsed to fetch the locations of all kernel objects and pass this to gperf to create a perfect hash table of their memory addresses. - The generated gperf code doesn't know that we are exclusively working with memory addresses and uses memory inefficently. A post-processing script process_gperf.py adjusts the generated code before it is compiled to work with pointer values directly and not strings containing them. - _k_object_init() calls inserted into the init functions for the set of kernel object types we are going to support so far Issue: ZEP-2187 Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
243 lines
5.6 KiB
C
243 lines
5.6 KiB
C
/*
|
|
* Copyright (c) 2016 Wind River Systems, Inc.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* @file @brief mutex kernel services
|
|
*
|
|
* This module contains routines for handling mutex locking and unlocking.
|
|
*
|
|
* Mutexes implement a priority inheritance algorithm that boosts the priority
|
|
* level of the owning thread to match the priority level of the highest
|
|
* priority thread waiting on the mutex.
|
|
*
|
|
* Each mutex that contributes to priority inheritance must be released in the
|
|
* reverse order in which is was acquired. Furthermore each subsequent mutex
|
|
* that contributes to raising the owning thread's priority level must be
|
|
* acquired at a point after the most recent "bumping" of the priority level.
|
|
*
|
|
* For example, if thread A has two mutexes contributing to the raising of its
|
|
* priority level, the second mutex M2 must be acquired by thread A after
|
|
* thread A's priority level was bumped due to owning the first mutex M1.
|
|
* When releasing the mutex, thread A must release M2 before it releases M1.
|
|
* Failure to follow this nested model may result in threads running at
|
|
* unexpected priority levels (too high, or too low).
|
|
*/
|
|
|
|
#include <kernel.h>
|
|
#include <kernel_structs.h>
|
|
#include <toolchain.h>
|
|
#include <linker/sections.h>
|
|
#include <wait_q.h>
|
|
#include <misc/dlist.h>
|
|
#include <debug/object_tracing_common.h>
|
|
#include <errno.h>
|
|
#include <init.h>
|
|
|
|
#define RECORD_STATE_CHANGE(mutex) do { } while ((0))
|
|
#define RECORD_CONFLICT(mutex) do { } while ((0))
|
|
|
|
|
|
extern struct k_mutex _k_mutex_list_start[];
|
|
extern struct k_mutex _k_mutex_list_end[];
|
|
|
|
#ifdef CONFIG_OBJECT_TRACING
|
|
|
|
struct k_mutex *_trace_list_k_mutex;
|
|
|
|
/*
|
|
* Complete initialization of statically defined mutexes.
|
|
*/
|
|
static int init_mutex_module(struct device *dev)
|
|
{
|
|
ARG_UNUSED(dev);
|
|
|
|
struct k_mutex *mutex;
|
|
|
|
for (mutex = _k_mutex_list_start; mutex < _k_mutex_list_end; mutex++) {
|
|
SYS_TRACING_OBJ_INIT(k_mutex, mutex);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
SYS_INIT(init_mutex_module, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
|
|
|
|
#endif /* CONFIG_OBJECT_TRACING */
|
|
|
|
void k_mutex_init(struct k_mutex *mutex)
|
|
{
|
|
mutex->owner = NULL;
|
|
mutex->lock_count = 0;
|
|
|
|
/* initialized upon first use */
|
|
/* mutex->owner_orig_prio = 0; */
|
|
|
|
sys_dlist_init(&mutex->wait_q);
|
|
|
|
SYS_TRACING_OBJ_INIT(k_mutex, mutex);
|
|
_k_object_init(mutex);
|
|
}
|
|
|
|
static int new_prio_for_inheritance(int target, int limit)
|
|
{
|
|
int new_prio = _is_prio_higher(target, limit) ? target : limit;
|
|
|
|
new_prio = _get_new_prio_with_ceiling(new_prio);
|
|
|
|
return new_prio;
|
|
}
|
|
|
|
static void adjust_owner_prio(struct k_mutex *mutex, int new_prio)
|
|
{
|
|
if (mutex->owner->base.prio != new_prio) {
|
|
|
|
K_DEBUG("%p (ready (y/n): %c) prio changed to %d (was %d)\n",
|
|
mutex->owner, _is_thread_ready(mutex->owner) ?
|
|
'y' : 'n',
|
|
new_prio, mutex->owner->base.prio);
|
|
|
|
_thread_priority_set(mutex->owner, new_prio);
|
|
}
|
|
}
|
|
|
|
int k_mutex_lock(struct k_mutex *mutex, s32_t timeout)
|
|
{
|
|
int new_prio, key;
|
|
|
|
_sched_lock();
|
|
|
|
if (likely(mutex->lock_count == 0 || mutex->owner == _current)) {
|
|
|
|
RECORD_STATE_CHANGE();
|
|
|
|
mutex->owner_orig_prio = mutex->lock_count == 0 ?
|
|
_current->base.prio :
|
|
mutex->owner_orig_prio;
|
|
|
|
mutex->lock_count++;
|
|
mutex->owner = _current;
|
|
|
|
K_DEBUG("%p took mutex %p, count: %d, orig prio: %d\n",
|
|
_current, mutex, mutex->lock_count,
|
|
mutex->owner_orig_prio);
|
|
|
|
k_sched_unlock();
|
|
|
|
return 0;
|
|
}
|
|
|
|
RECORD_CONFLICT();
|
|
|
|
if (unlikely(timeout == K_NO_WAIT)) {
|
|
k_sched_unlock();
|
|
return -EBUSY;
|
|
}
|
|
|
|
#if 0
|
|
if (_is_prio_higher(_current->prio, mutex->owner->prio)) {
|
|
new_prio = _current->prio;
|
|
}
|
|
new_prio = _get_new_prio_with_ceiling(new_prio);
|
|
#endif
|
|
new_prio = new_prio_for_inheritance(_current->base.prio,
|
|
mutex->owner->base.prio);
|
|
|
|
key = irq_lock();
|
|
|
|
K_DEBUG("adjusting prio up on mutex %p\n", mutex);
|
|
|
|
if (_is_prio_higher(new_prio, mutex->owner->base.prio)) {
|
|
adjust_owner_prio(mutex, new_prio);
|
|
}
|
|
|
|
_pend_current_thread(&mutex->wait_q, timeout);
|
|
|
|
int got_mutex = _Swap(key);
|
|
|
|
K_DEBUG("on mutex %p got_mutex value: %d\n", mutex, got_mutex);
|
|
|
|
K_DEBUG("%p got mutex %p (y/n): %c\n", _current, mutex,
|
|
got_mutex ? 'y' : 'n');
|
|
|
|
if (got_mutex == 0) {
|
|
k_sched_unlock();
|
|
return 0;
|
|
}
|
|
|
|
/* timed out */
|
|
|
|
K_DEBUG("%p timeout on mutex %p\n", _current, mutex);
|
|
|
|
struct k_thread *waiter =
|
|
(struct k_thread *)sys_dlist_peek_head(&mutex->wait_q);
|
|
|
|
new_prio = mutex->owner_orig_prio;
|
|
new_prio = waiter ? new_prio_for_inheritance(waiter->base.prio,
|
|
new_prio) : new_prio;
|
|
|
|
K_DEBUG("adjusting prio down on mutex %p\n", mutex);
|
|
|
|
key = irq_lock();
|
|
adjust_owner_prio(mutex, new_prio);
|
|
irq_unlock(key);
|
|
|
|
k_sched_unlock();
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
void k_mutex_unlock(struct k_mutex *mutex)
|
|
{
|
|
int key;
|
|
|
|
__ASSERT(mutex->lock_count > 0, "");
|
|
__ASSERT(mutex->owner == _current, "");
|
|
|
|
_sched_lock();
|
|
|
|
RECORD_STATE_CHANGE();
|
|
|
|
mutex->lock_count--;
|
|
|
|
K_DEBUG("mutex %p lock_count: %d\n", mutex, mutex->lock_count);
|
|
|
|
if (mutex->lock_count != 0) {
|
|
k_sched_unlock();
|
|
return;
|
|
}
|
|
|
|
key = irq_lock();
|
|
|
|
adjust_owner_prio(mutex, mutex->owner_orig_prio);
|
|
|
|
struct k_thread *new_owner = _unpend_first_thread(&mutex->wait_q);
|
|
|
|
K_DEBUG("new owner of mutex %p: %p (prio: %d)\n",
|
|
mutex, new_owner, new_owner ? new_owner->base.prio : -1000);
|
|
|
|
if (new_owner) {
|
|
_abort_thread_timeout(new_owner);
|
|
_ready_thread(new_owner);
|
|
|
|
irq_unlock(key);
|
|
|
|
_set_thread_return_value(new_owner, 0);
|
|
|
|
/*
|
|
* new owner is already of higher or equal prio than first
|
|
* waiter since the wait queue is priority-based: no need to
|
|
* ajust its priority
|
|
*/
|
|
mutex->owner = new_owner;
|
|
mutex->lock_count++;
|
|
mutex->owner_orig_prio = new_owner->base.prio;
|
|
} else {
|
|
irq_unlock(key);
|
|
mutex->owner = NULL;
|
|
}
|
|
|
|
k_sched_unlock();
|
|
}
|