zephyr/subsys/disk/disk_access_spi_sdhc.c
Henrik Brix Andersen c64e0ce923 disk: sdhc: spi: leave SPI CS GPIO handling to the SPI controller driver
Leave the SPI CS GPIO handling to the SPI controller driver and make SPI
CS GPIO optional for SDHC disk access via SPI.

The SPI SDHC implementation relies on SPI_HOLD_ON_CS so we need to
explicitly release the SPI controller driver after ending transmissions
to force the CS line to be de-asserted.

Fixes #27444.

Signed-off-by: Henrik Brix Andersen <henrik@brixandersen.dk>
2020-08-25 10:07:53 +02:00

896 lines
19 KiB
C

/*
* Copyright (c) 2017 Google LLC.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <logging/log.h>
LOG_MODULE_REGISTER(sdhc_spi, CONFIG_DISK_LOG_LEVEL);
#include <disk/disk_access.h>
#include <drivers/gpio.h>
#include <sys/byteorder.h>
#include <drivers/spi.h>
#include <sys/crc.h>
#include "disk_access_sdhc.h"
/* Clock speed used during initialisation */
#define SDHC_SPI_INITIAL_SPEED 400000
/* Clock speed used after initialisation */
#define SDHC_SPI_SPEED 4000000
#define SPI_SDHC_NODE DT_INST(0, zephyr_mmc_spi_slot)
#if !DT_NODE_HAS_STATUS(SPI_SDHC_NODE, okay)
#warning NO SDHC slot specified on board
#else
struct sdhc_spi_data {
struct device *spi;
struct spi_config cfg;
#if DT_SPI_DEV_HAS_CS_GPIOS(SPI_SDHC_NODE)
struct spi_cs_control cs;
#endif
bool high_capacity;
uint32_t sector_count;
uint8_t status;
#if LOG_LEVEL >= LOG_LEVEL_DBG
int trace_dir;
#endif
};
DEVICE_DECLARE(sdhc_spi_0);
/* Traces card traffic for LOG_LEVEL_DBG */
static int sdhc_spi_trace(struct sdhc_spi_data *data, int dir, int err,
const uint8_t *buf, int len)
{
#if LOG_LEVEL >= LOG_LEVEL_DBG
if (err != 0) {
printk("(err=%d)", err);
data->trace_dir = 0;
}
if (dir != data->trace_dir) {
data->trace_dir = dir;
printk("\n");
if (dir == 1) {
printk(">>");
} else if (dir == -1) {
printk("<<");
}
}
for (; len != 0; len--) {
printk(" %x", *buf++);
}
#endif
return err;
}
/* Receives a fixed number of bytes */
static int sdhc_spi_rx_bytes(struct sdhc_spi_data *data, uint8_t *buf, int len)
{
struct spi_buf tx_bufs[] = {
{
.buf = (uint8_t *)sdhc_ones,
.len = len
}
};
const struct spi_buf_set tx = {
.buffers = tx_bufs,
.count = 1,
};
struct spi_buf rx_bufs[] = {
{
.buf = buf,
.len = len
}
};
const struct spi_buf_set rx = {
.buffers = rx_bufs,
.count = 1,
};
return sdhc_spi_trace(data, -1,
spi_transceive(data->spi, &data->cfg, &tx, &rx),
buf, len);
}
/* Receives and returns a single byte */
static int sdhc_spi_rx_u8(struct sdhc_spi_data *data)
{
uint8_t buf[1];
int err = sdhc_spi_rx_bytes(data, buf, sizeof(buf));
if (err != 0) {
return err;
}
return buf[0];
}
/* Transmits a block of bytes */
static int sdhc_spi_tx(struct sdhc_spi_data *data, const uint8_t *buf, int len)
{
struct spi_buf spi_bufs[] = {
{
.buf = (uint8_t *)buf,
.len = len
}
};
const struct spi_buf_set tx = {
.buffers = spi_bufs,
.count = 1
};
return sdhc_spi_trace(data, 1,
spi_write(data->spi, &data->cfg, &tx), buf,
len);
}
/* Transmits the command and payload */
static int sdhc_spi_tx_cmd(struct sdhc_spi_data *data, uint8_t cmd, uint32_t payload)
{
uint8_t buf[SDHC_CMD_SIZE];
LOG_DBG("cmd%d payload=%u", cmd, payload);
sdhc_spi_trace(data, 0, 0, NULL, 0);
/* Encode the command */
buf[0] = SDHC_TX | (cmd & ~SDHC_START);
sys_put_be32(payload, &buf[1]);
buf[SDHC_CMD_BODY_SIZE] = crc7_be(0, buf, SDHC_CMD_BODY_SIZE);
return sdhc_spi_tx(data, buf, sizeof(buf));
}
/* Reads until anything but `discard` is received */
static int sdhc_spi_skip(struct sdhc_spi_data *data, int discard)
{
int err;
struct sdhc_retry retry;
sdhc_retry_init(&retry, SDHC_READY_TIMEOUT, 0);
do {
err = sdhc_spi_rx_u8(data);
if (err != discard) {
return err;
}
} while (sdhc_retry_ok(&retry));
LOG_WRN("Timeout while waiting for !%d", discard);
return -ETIMEDOUT;
}
/* Reads until the first byte in a response is received */
static int sdhc_spi_skip_until_start(struct sdhc_spi_data *data)
{
struct sdhc_retry retry;
int status;
sdhc_retry_init(&retry, SDHC_READY_TIMEOUT, 0);
do {
status = sdhc_spi_rx_u8(data);
if (status < 0) {
return status;
}
if ((status & SDHC_START) == 0) {
return status;
}
} while (sdhc_retry_ok(&retry));
return -ETIMEDOUT;
}
/* Reads until the bus goes high */
static int sdhc_spi_skip_until_ready(struct sdhc_spi_data *data)
{
struct sdhc_retry retry;
int status;
sdhc_retry_init(&retry, SDHC_READY_TIMEOUT, 0);
do {
status = sdhc_spi_rx_u8(data);
if (status < 0) {
return status;
}
if (status == 0) {
/* Card is still busy */
continue;
}
if (status == 0xFF) {
return 0;
}
/* Got something else. Some cards release MISO part
* way through the transfer. Read another and see if
* MISO went high.
*/
status = sdhc_spi_rx_u8(data);
if (status < 0) {
return status;
}
if (status == 0xFF) {
return 0;
}
return -EPROTO;
} while (sdhc_retry_ok(&retry));
return -ETIMEDOUT;
}
/* Sends a command and returns the received R1 status code */
static int sdhc_spi_cmd_r1_raw(struct sdhc_spi_data *data,
uint8_t cmd, uint32_t payload)
{
int err;
err = sdhc_spi_tx_cmd(data, cmd, payload);
if (err != 0) {
return err;
}
err = sdhc_spi_skip_until_start(data);
/* Ensure there's a idle byte between commands */
if (cmd != SDHC_SEND_CSD && cmd != SDHC_SEND_CID &&
cmd != SDHC_READ_SINGLE_BLOCK && cmd != SDHC_READ_MULTIPLE_BLOCK &&
cmd != SDHC_WRITE_BLOCK && cmd != SDHC_WRITE_MULTIPLE_BLOCK) {
sdhc_spi_rx_u8(data);
}
return err;
}
/* Sends a command and returns the mapped error code */
static int sdhc_spi_cmd_r1(struct sdhc_spi_data *data,
uint8_t cmd, uint32_t payload)
{
return sdhc_map_r1_status(sdhc_spi_cmd_r1_raw(data, cmd, payload));
}
/* Sends a command in idle mode returns the mapped error code */
static int sdhc_spi_cmd_r1_idle(struct sdhc_spi_data *data, uint8_t cmd,
uint32_t payload)
{
return sdhc_map_r1_idle_status(sdhc_spi_cmd_r1_raw(data, cmd, payload));
}
/* Sends a command and returns the received multi-byte R2 status code */
static int sdhc_spi_cmd_r2(struct sdhc_spi_data *data,
uint8_t cmd, uint32_t payload)
{
int err;
int r1;
int r2;
err = sdhc_spi_tx_cmd(data, cmd, payload);
if (err != 0) {
return err;
}
r1 = sdhc_map_r1_status(sdhc_spi_skip_until_start(data));
/* Always read the rest of the reply */
r2 = sdhc_spi_rx_u8(data);
/* Ensure there's a idle byte between commands */
sdhc_spi_rx_u8(data);
if (r1 < 0) {
return r1;
}
return r2;
}
/* Sends a command and returns the received multi-byte status code */
static int sdhc_spi_cmd_r37_raw(struct sdhc_spi_data *data,
uint8_t cmd, uint32_t payload, uint32_t *reply)
{
int err;
int status;
uint8_t buf[sizeof(*reply)];
err = sdhc_spi_tx_cmd(data, cmd, payload);
if (err != 0) {
return err;
}
status = sdhc_spi_skip_until_start(data);
/* Always read the rest of the reply */
err = sdhc_spi_rx_bytes(data, buf, sizeof(buf));
*reply = sys_get_be32(buf);
/* Ensure there's a idle byte between commands */
sdhc_spi_rx_u8(data);
if (err != 0) {
return err;
}
return status;
}
/* Sends a command in idle mode returns the mapped error code */
static int sdhc_spi_cmd_r7_idle(struct sdhc_spi_data *data,
uint8_t cmd, uint32_t payload, uint32_t *reply)
{
return sdhc_map_r1_idle_status(
sdhc_spi_cmd_r37_raw(data, cmd, payload, reply));
}
/* Sends a command and returns the received multi-byte R3 error code */
static int sdhc_spi_cmd_r3(struct sdhc_spi_data *data,
uint8_t cmd, uint32_t payload, uint32_t *reply)
{
return sdhc_map_r1_status(
sdhc_spi_cmd_r37_raw(data, cmd, payload, reply));
}
/* Receives a SDHC data block */
static int sdhc_spi_rx_block(struct sdhc_spi_data *data,
uint8_t *buf, int len)
{
int err;
int token;
int i;
/* Note the one extra byte to ensure there's an idle byte
* between commands.
*/
uint8_t crc[SDHC_CRC16_SIZE + 1];
token = sdhc_spi_skip(data, 0xFF);
if (token < 0) {
return token;
}
if (token != SDHC_TOKEN_SINGLE) {
/* No start token */
return -EIO;
}
/* Read the data in batches */
for (i = 0; i < len; i += sizeof(sdhc_ones)) {
int remain = MIN(sizeof(sdhc_ones), len - i);
struct spi_buf tx_bufs[] = {
{
.buf = (uint8_t *)sdhc_ones,
.len = remain
}
};
const struct spi_buf_set tx = {
.buffers = tx_bufs,
.count = 1,
};
struct spi_buf rx_bufs[] = {
{
.buf = &buf[i],
.len = remain
}
};
const struct spi_buf_set rx = {
.buffers = rx_bufs,
.count = 1,
};
err = sdhc_spi_trace(data, -1,
spi_transceive(data->spi, &data->cfg,
&tx, &rx),
&buf[i], remain);
if (err != 0) {
return err;
}
}
err = sdhc_spi_rx_bytes(data, crc, sizeof(crc));
if (err != 0) {
return err;
}
if (sys_get_be16(crc) != crc16_itu_t(0, buf, len)) {
/* Bad CRC */
return -EILSEQ;
}
return 0;
}
/* Transmits a SDHC data block */
static int sdhc_spi_tx_block(struct sdhc_spi_data *data,
uint8_t *send, int len)
{
uint8_t buf[SDHC_CRC16_SIZE];
int err;
/* Start the block */
buf[0] = SDHC_TOKEN_SINGLE;
err = sdhc_spi_tx(data, buf, 1);
if (err != 0) {
return err;
}
/* Write the payload */
err = sdhc_spi_tx(data, send, len);
if (err != 0) {
return err;
}
/* Build and write the trailing CRC */
sys_put_be16(crc16_itu_t(0, send, len), buf);
err = sdhc_spi_tx(data, buf, sizeof(buf));
if (err != 0) {
return err;
}
return sdhc_map_data_status(sdhc_spi_rx_u8(data));
}
static int sdhc_spi_recover(struct sdhc_spi_data *data)
{
/* TODO(nzmichaelh): implement */
return sdhc_spi_cmd_r1(data, SDHC_SEND_STATUS, 0);
}
/* Attempts to return the card to idle mode */
static int sdhc_spi_go_idle(struct sdhc_spi_data *data)
{
/* Write the initial >= 74 clocks */
sdhc_spi_tx(data, sdhc_ones, 10);
spi_release(data->spi, &data->cfg);
return sdhc_spi_cmd_r1_idle(data, SDHC_GO_IDLE_STATE, 0);
}
/* Checks the supported host voltage and basic protocol of a SDHC card */
static int sdhc_spi_check_interface(struct sdhc_spi_data *data)
{
uint32_t cond;
int err;
/* Check that the current voltage is supported */
err = sdhc_spi_cmd_r7_idle(data, SDHC_SEND_IF_COND,
SDHC_VHS_3V3 | SDHC_CHECK, &cond);
if (err != 0) {
return err;
}
if ((cond & 0xFF) != SDHC_CHECK) {
/* Card returned a different check pattern */
return -ENOENT;
}
if ((cond & SDHC_VHS_MASK) != SDHC_VHS_3V3) {
/* Card doesn't support this voltage */
return -ENOTSUP;
}
return 0;
}
/* Detect and initialise the card */
static int sdhc_spi_detect(struct sdhc_spi_data *data)
{
int err;
uint32_t ocr;
struct sdhc_retry retry;
uint8_t structure;
uint8_t readbllen;
uint32_t csize;
uint8_t csizemult;
uint8_t buf[SDHC_CSD_SIZE];
bool is_v2;
data->cfg.frequency = SDHC_SPI_INITIAL_SPEED;
data->status = DISK_STATUS_UNINIT;
sdhc_retry_init(&retry, SDHC_INIT_TIMEOUT, SDHC_RETRY_DELAY);
/* Synchronise with the card by sending it to idle */
do {
err = sdhc_spi_go_idle(data);
if (err == 0) {
err = sdhc_spi_check_interface(data);
is_v2 = (err == 0) ? true : false;
break;
}
if (!sdhc_retry_ok(&retry)) {
return -ENOENT;
}
} while (true);
/* Enable CRC mode */
err = sdhc_spi_cmd_r1_idle(data, SDHC_CRC_ON_OFF, 1);
if (err != 0) {
return err;
}
/* Wait for the card to leave idle state */
do {
sdhc_spi_cmd_r1_raw(data, SDHC_APP_CMD, 0);
/* Set HCS only if card conforms to specification v2.00 (cf. 4.2.3) */
err = sdhc_spi_cmd_r1(data, SDHC_SEND_OP_COND, is_v2 ? SDHC_HCS : 0);
if (err == 0) {
break;
}
} while (sdhc_retry_ok(&retry));
if (err != 0) {
/* Card never exited idle */
return -ETIMEDOUT;
}
ocr = 0;
if (is_v2) {
do {
/* Read OCR to check if this is a SDSC or SDHC card.
* CCS bit is valid after BUSY bit is set.
*/
err = sdhc_spi_cmd_r3(data, SDHC_READ_OCR, 0, &ocr);
if (err != 0) {
return err;
}
if ((ocr & SDHC_BUSY) != 0U) {
break;
}
} while (sdhc_retry_ok(&retry));
}
if ((ocr & SDHC_CCS) != 0U) {
data->high_capacity = true;
} else {
/* A 'SDSC' card: Set block length to 512 bytes. */
data->high_capacity = false;
err = sdhc_spi_cmd_r1(data, SDHC_SET_BLOCK_SIZE, SDMMC_DEFAULT_BLOCK_SIZE);
if (err != 0) {
return err;
}
}
/* Read the CSD */
err = sdhc_spi_cmd_r1(data, SDHC_SEND_CSD, 0);
if (err != 0) {
return err;
}
err = sdhc_spi_rx_block(data, buf, sizeof(buf));
if (err != 0) {
return err;
}
/* Bits 126..127 are the structure version */
structure = (buf[0] >> 6);
switch (structure) {
case SDHC_CSD_V1:
/* The maximum read data block length is given by bits 80..83 raised
* to the power of 2. Possible values are 9, 10 and 11 for 512, 1024
* and 2048 bytes, respectively. This driver does not make use of block
* lengths greater than 512 bytes, but forces 512 byte block transfers
* instead.
*/
readbllen = buf[5] & ((1 << 4) - 1);
if ((readbllen < 9) || (readbllen > 11)) {
/* Invalid maximum read data block length (cf. section 5.3.2) */
return -ENOTSUP;
}
/* The capacity of the card is given by bits 62..73 plus 1 multiplied
* by bits 47..49 plus 2 raised to the power of 2 in maximum read data
* blocks.
*/
csize = (sys_get_be32(&buf[6]) >> 14) & ((1 << 12) - 1);
csizemult = (uint8_t) ((sys_get_be16(&buf[9]) >> 7) & ((1 << 3) - 1));
data->sector_count = ((csize + 1) << (csizemult + 2 + readbllen - 9));
break;
case SDHC_CSD_V2:
/* Bits 48..69 are the capacity of the card in 512 KiB units, minus 1.
*/
csize = sys_get_be32(&buf[6]) & ((1 << 22) - 1);
if (csize < 4112) {
/* Invalid capacity (cf. section 5.3.3) */
return -ENOTSUP;
}
data->sector_count = (csize + 1) *
(512 * 1024 / SDMMC_DEFAULT_BLOCK_SIZE);
break;
default:
/* Unsupported CSD format */
return -ENOTSUP;
}
LOG_INF("Found a ~%u MiB SDHC card.",
data->sector_count / (1024 * 1024 / SDMMC_DEFAULT_BLOCK_SIZE));
/* Read the CID */
err = sdhc_spi_cmd_r1(data, SDHC_SEND_CID, 0);
if (err != 0) {
return err;
}
err = sdhc_spi_rx_block(data, buf, sizeof(buf));
if (err != 0) {
return err;
}
LOG_INF("Manufacturer ID=%d OEM='%c%c' Name='%c%c%c%c%c' "
"Revision=0x%x Serial=0x%x",
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
buf[7], buf[8], sys_get_be32(&buf[9]));
/* Initilisation complete */
data->cfg.frequency = SDHC_SPI_SPEED;
data->status = DISK_STATUS_OK;
return 0;
}
static int sdhc_spi_read(struct sdhc_spi_data *data,
uint8_t *buf, uint32_t sector, uint32_t count)
{
int err;
uint32_t addr;
err = sdhc_map_disk_status(data->status);
if (err != 0) {
return err;
}
/* Translate sector number to data address.
* SDSC cards use byte addressing, SDHC cards use block addressing.
*/
if (data->high_capacity) {
addr = sector;
} else {
addr = sector * SDMMC_DEFAULT_BLOCK_SIZE;
}
/* Send the start read command */
err = sdhc_spi_cmd_r1(data, SDHC_READ_MULTIPLE_BLOCK, addr);
if (err != 0) {
goto error;
}
/* Read the sectors */
for (; count != 0U; count--) {
err = sdhc_spi_rx_block(data, buf, SDMMC_DEFAULT_BLOCK_SIZE);
if (err != 0) {
goto error;
}
buf += SDMMC_DEFAULT_BLOCK_SIZE;
}
/* Ignore the error as STOP_TRANSMISSION always returns 0x7F */
sdhc_spi_cmd_r1(data, SDHC_STOP_TRANSMISSION, 0);
/* Wait until the card becomes ready */
err = sdhc_spi_skip_until_ready(data);
error:
spi_release(data->spi, &data->cfg);
return err;
}
static int sdhc_spi_write(struct sdhc_spi_data *data,
const uint8_t *buf, uint32_t sector, uint32_t count)
{
int err;
uint32_t addr;
err = sdhc_map_disk_status(data->status);
if (err != 0) {
return err;
}
/* Write the blocks one-by-one */
for (; count != 0U; count--) {
/* Translate sector number to data address.
* SDSC cards use byte addressing, SDHC cards use block addressing.
*/
if (data->high_capacity) {
addr = sector;
} else {
addr = sector * SDMMC_DEFAULT_BLOCK_SIZE;
}
err = sdhc_spi_cmd_r1(data, SDHC_WRITE_BLOCK, addr);
if (err < 0) {
goto error;
}
err = sdhc_spi_tx_block(data, (uint8_t *)buf,
SDMMC_DEFAULT_BLOCK_SIZE);
if (err != 0) {
goto error;
}
/* Wait for the card to finish programming */
err = sdhc_spi_skip_until_ready(data);
if (err != 0) {
goto error;
}
err = sdhc_spi_cmd_r2(data, SDHC_SEND_STATUS, 0);
if (err != 0) {
goto error;
}
buf += SDMMC_DEFAULT_BLOCK_SIZE;
sector++;
}
err = 0;
error:
spi_release(data->spi, &data->cfg);
return err;
}
static int disk_spi_sdhc_init(struct device *dev);
static int sdhc_spi_init(struct device *dev)
{
struct sdhc_spi_data *data = dev->data;
data->spi = device_get_binding(DT_BUS_LABEL(SPI_SDHC_NODE));
data->cfg.frequency = SDHC_SPI_INITIAL_SPEED;
data->cfg.operation = SPI_WORD_SET(8) | SPI_HOLD_ON_CS;
data->cfg.slave = DT_REG_ADDR(SPI_SDHC_NODE);
#if DT_SPI_DEV_HAS_CS_GPIOS(SPI_SDHC_NODE)
data->cs.gpio_dev =
device_get_binding(DT_SPI_DEV_CS_GPIOS_LABEL(SPI_SDHC_NODE));
__ASSERT_NO_MSG(data->cs.gpio_dev != NULL);
data->cs.gpio_pin = DT_SPI_DEV_CS_GPIOS_PIN(SPI_SDHC_NODE);
data->cs.gpio_dt_flags = DT_SPI_DEV_CS_GPIOS_FLAGS(SPI_SDHC_NODE);
data->cfg.cs = &data->cs;
#endif
disk_spi_sdhc_init(dev);
return 0;
}
static int disk_spi_sdhc_access_status(struct disk_info *disk)
{
struct device *dev = disk->dev;
struct sdhc_spi_data *data = dev->data;
return data->status;
}
static int disk_spi_sdhc_access_read(struct disk_info *disk,
uint8_t *buf, uint32_t sector, uint32_t count)
{
struct device *dev = disk->dev;
struct sdhc_spi_data *data = dev->data;
int err;
LOG_DBG("sector=%u count=%u", sector, count);
err = sdhc_spi_read(data, buf, sector, count);
if (err != 0 && sdhc_is_retryable(err)) {
sdhc_spi_recover(data);
err = sdhc_spi_read(data, buf, sector, count);
}
return err;
}
static int disk_spi_sdhc_access_write(struct disk_info *disk,
const uint8_t *buf, uint32_t sector, uint32_t count)
{
struct device *dev = disk->dev;
struct sdhc_spi_data *data = dev->data;
int err;
LOG_DBG("sector=%u count=%u", sector, count);
err = sdhc_spi_write(data, buf, sector, count);
if (err != 0 && sdhc_is_retryable(err)) {
sdhc_spi_recover(data);
err = sdhc_spi_write(data, buf, sector, count);
}
return err;
}
static int disk_spi_sdhc_access_ioctl(struct disk_info *disk,
uint8_t cmd, void *buf)
{
struct device *dev = disk->dev;
struct sdhc_spi_data *data = dev->data;
int err;
err = sdhc_map_disk_status(data->status);
if (err != 0) {
return err;
}
switch (cmd) {
case DISK_IOCTL_CTRL_SYNC:
break;
case DISK_IOCTL_GET_SECTOR_COUNT:
*(uint32_t *)buf = data->sector_count;
break;
case DISK_IOCTL_GET_SECTOR_SIZE:
*(uint32_t *)buf = SDMMC_DEFAULT_BLOCK_SIZE;
break;
case DISK_IOCTL_GET_ERASE_BLOCK_SZ:
*(uint32_t *)buf = SDMMC_DEFAULT_BLOCK_SIZE;
break;
default:
return -EINVAL;
}
return 0;
}
static int disk_spi_sdhc_access_init(struct disk_info *disk)
{
struct device *dev = disk->dev;
struct sdhc_spi_data *data = dev->data;
int err;
err = sdhc_spi_detect(data);
spi_release(data->spi, &data->cfg);
return err;
}
static const struct disk_operations spi_sdhc_disk_ops = {
.init = disk_spi_sdhc_access_init,
.status = disk_spi_sdhc_access_status,
.read = disk_spi_sdhc_access_read,
.write = disk_spi_sdhc_access_write,
.ioctl = disk_spi_sdhc_access_ioctl,
};
static struct disk_info spi_sdhc_disk = {
.name = CONFIG_DISK_SDHC_VOLUME_NAME,
.ops = &spi_sdhc_disk_ops,
};
static int disk_spi_sdhc_init(struct device *dev)
{
struct sdhc_spi_data *data = dev->data;
data->status = DISK_STATUS_UNINIT;
spi_sdhc_disk.dev = dev;
return disk_access_register(&spi_sdhc_disk);
}
static struct sdhc_spi_data sdhc_spi_data_0;
DEVICE_AND_API_INIT(sdhc_spi_0,
DT_LABEL(SPI_SDHC_NODE),
sdhc_spi_init, &sdhc_spi_data_0, NULL,
APPLICATION, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT, NULL);
#endif