mirror of
https://github.com/zephyrproject-rtos/zephyr
synced 2025-09-07 07:13:11 +00:00
Fix init_group bit clearing in _k_thread_group_leave() Fix _k_object_uninit calling order. Though the order won't make much difference in this case it is always good to destroy or uninitialize in the reverse order of the object creation or initialization. Signed-off-by: Ramakrishna Pallala <ramakrishna.pallala@intel.com>
726 lines
17 KiB
C
726 lines
17 KiB
C
/*
|
|
* Copyright (c) 2010-2014 Wind River Systems, Inc.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @brief Kernel thread support
|
|
*
|
|
* This module provides general purpose thread support.
|
|
*/
|
|
|
|
#include <kernel.h>
|
|
|
|
#include <toolchain.h>
|
|
#include <linker/sections.h>
|
|
|
|
#include <kernel_structs.h>
|
|
#include <misc/printk.h>
|
|
#include <sys_clock.h>
|
|
#include <drivers/system_timer.h>
|
|
#include <ksched.h>
|
|
#include <wait_q.h>
|
|
#include <atomic.h>
|
|
#include <syscall_handler.h>
|
|
|
|
extern struct _static_thread_data _static_thread_data_list_start[];
|
|
extern struct _static_thread_data _static_thread_data_list_end[];
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static int thread_count;
|
|
|
|
/*
|
|
* Fetch an unused thread ID. Returns -1 if all thread IDs are in use
|
|
*/
|
|
static int get_next_thread_index(void)
|
|
{
|
|
int key, pos = -1;
|
|
|
|
key = irq_lock();
|
|
|
|
if (thread_count == CONFIG_MAX_THREAD_BYTES * 8) {
|
|
/* We have run out of thread IDs! */
|
|
goto out;
|
|
}
|
|
|
|
/* find an unused bit in the kernel's bitfield of in-use thread IDs */
|
|
for (int i = 0; i < CONFIG_MAX_THREAD_BYTES; i++) {
|
|
int fs;
|
|
|
|
fs = find_lsb_set(_kernel.free_thread_ids[i]);
|
|
if (fs) {
|
|
/* find_lsb_set counts bit positions starting at 1 */
|
|
--fs;
|
|
_kernel.free_thread_ids[i] &= ~(1 << fs);
|
|
pos = fs + (i * 8);
|
|
break;
|
|
}
|
|
}
|
|
|
|
thread_count++;
|
|
out:
|
|
irq_unlock(key);
|
|
|
|
return pos;
|
|
}
|
|
|
|
static void free_thread_index(int id)
|
|
{
|
|
int index, key;
|
|
u8_t bit;
|
|
|
|
if (id == -1) {
|
|
return;
|
|
}
|
|
|
|
key = irq_lock();
|
|
|
|
thread_count--;
|
|
index = id / 8;
|
|
bit = 1 << (id % 8);
|
|
_kernel.free_thread_ids[index] |= bit;
|
|
|
|
irq_unlock(key);
|
|
}
|
|
#endif
|
|
|
|
#define _FOREACH_STATIC_THREAD(thread_data) \
|
|
for (struct _static_thread_data *thread_data = \
|
|
_static_thread_data_list_start; \
|
|
thread_data < _static_thread_data_list_end; \
|
|
thread_data++)
|
|
|
|
|
|
int k_is_in_isr(void)
|
|
{
|
|
return _is_in_isr();
|
|
}
|
|
|
|
/*
|
|
* This function tags the current thread as essential to system operation.
|
|
* Exceptions raised by this thread will be treated as a fatal system error.
|
|
*/
|
|
void _thread_essential_set(void)
|
|
{
|
|
_current->base.user_options |= K_ESSENTIAL;
|
|
}
|
|
|
|
/*
|
|
* This function tags the current thread as not essential to system operation.
|
|
* Exceptions raised by this thread may be recoverable.
|
|
* (This is the default tag for a thread.)
|
|
*/
|
|
void _thread_essential_clear(void)
|
|
{
|
|
_current->base.user_options &= ~K_ESSENTIAL;
|
|
}
|
|
|
|
/*
|
|
* This routine indicates if the current thread is an essential system thread.
|
|
*
|
|
* Returns non-zero if current thread is essential, zero if it is not.
|
|
*/
|
|
int _is_thread_essential(void)
|
|
{
|
|
return _current->base.user_options & K_ESSENTIAL;
|
|
}
|
|
|
|
void k_busy_wait(u32_t usec_to_wait)
|
|
{
|
|
#if defined(CONFIG_TICKLESS_KERNEL) && \
|
|
!defined(CONFIG_BUSY_WAIT_USES_ALTERNATE_CLOCK)
|
|
int saved_always_on = k_enable_sys_clock_always_on();
|
|
#endif
|
|
/* use 64-bit math to prevent overflow when multiplying */
|
|
u32_t cycles_to_wait = (u32_t)(
|
|
(u64_t)usec_to_wait *
|
|
(u64_t)sys_clock_hw_cycles_per_sec /
|
|
(u64_t)USEC_PER_SEC
|
|
);
|
|
u32_t start_cycles = k_cycle_get_32();
|
|
|
|
for (;;) {
|
|
u32_t current_cycles = k_cycle_get_32();
|
|
|
|
/* this handles the rollover on an unsigned 32-bit value */
|
|
if ((current_cycles - start_cycles) >= cycles_to_wait) {
|
|
break;
|
|
}
|
|
}
|
|
#if defined(CONFIG_TICKLESS_KERNEL) && \
|
|
!defined(CONFIG_BUSY_WAIT_USES_ALTERNATE_CLOCK)
|
|
_sys_clock_always_on = saved_always_on;
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_THREAD_CUSTOM_DATA
|
|
void _impl_k_thread_custom_data_set(void *value)
|
|
{
|
|
_current->custom_data = value;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
_SYSCALL_HANDLER(k_thread_custom_data_set, data)
|
|
{
|
|
_impl_k_thread_custom_data_set((void *)data);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
void *_impl_k_thread_custom_data_get(void)
|
|
{
|
|
return _current->custom_data;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
_SYSCALL_HANDLER0_SIMPLE(k_thread_custom_data_get);
|
|
#endif /* CONFIG_USERSPACE */
|
|
#endif /* CONFIG_THREAD_CUSTOM_DATA */
|
|
|
|
#if defined(CONFIG_THREAD_MONITOR)
|
|
/*
|
|
* Remove a thread from the kernel's list of active threads.
|
|
*/
|
|
void _thread_monitor_exit(struct k_thread *thread)
|
|
{
|
|
unsigned int key = irq_lock();
|
|
|
|
if (thread == _kernel.threads) {
|
|
_kernel.threads = _kernel.threads->next_thread;
|
|
} else {
|
|
struct k_thread *prev_thread;
|
|
|
|
prev_thread = _kernel.threads;
|
|
while (thread != prev_thread->next_thread) {
|
|
prev_thread = prev_thread->next_thread;
|
|
}
|
|
prev_thread->next_thread = thread->next_thread;
|
|
}
|
|
|
|
irq_unlock(key);
|
|
}
|
|
#endif /* CONFIG_THREAD_MONITOR */
|
|
|
|
#ifdef CONFIG_STACK_SENTINEL
|
|
/* Check that the stack sentinel is still present
|
|
*
|
|
* The stack sentinel feature writes a magic value to the lowest 4 bytes of
|
|
* the thread's stack when the thread is initialized. This value gets checked
|
|
* in a few places:
|
|
*
|
|
* 1) In k_yield() if the current thread is not swapped out
|
|
* 2) After servicing a non-nested interrupt
|
|
* 3) In _Swap(), check the sentinel in the outgoing thread
|
|
*
|
|
* Item 2 requires support in arch/ code.
|
|
*
|
|
* If the check fails, the thread will be terminated appropriately through
|
|
* the system fatal error handler.
|
|
*/
|
|
void _check_stack_sentinel(void)
|
|
{
|
|
u32_t *stack;
|
|
|
|
if (_current->base.thread_state == _THREAD_DUMMY) {
|
|
return;
|
|
}
|
|
|
|
stack = (u32_t *)_current->stack_info.start;
|
|
if (*stack != STACK_SENTINEL) {
|
|
/* Restore it so further checks don't trigger this same error */
|
|
*stack = STACK_SENTINEL;
|
|
_k_except_reason(_NANO_ERR_STACK_CHK_FAIL);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Common thread entry point function (used by all threads)
|
|
*
|
|
* This routine invokes the actual thread entry point function and passes
|
|
* it three arguments. It also handles graceful termination of the thread
|
|
* if the entry point function ever returns.
|
|
*
|
|
* This routine does not return, and is marked as such so the compiler won't
|
|
* generate preamble code that is only used by functions that actually return.
|
|
*/
|
|
FUNC_NORETURN void _thread_entry(k_thread_entry_t entry,
|
|
void *p1, void *p2, void *p3)
|
|
{
|
|
entry(p1, p2, p3);
|
|
|
|
#ifdef CONFIG_MULTITHREADING
|
|
k_thread_abort(k_current_get());
|
|
#else
|
|
for (;;) {
|
|
k_cpu_idle();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Compiler can't tell that k_thread_abort() won't return and issues a
|
|
* warning unless we tell it that control never gets this far.
|
|
*/
|
|
|
|
CODE_UNREACHABLE;
|
|
}
|
|
|
|
#ifdef CONFIG_MULTITHREADING
|
|
void _impl_k_thread_start(struct k_thread *thread)
|
|
{
|
|
int key = irq_lock(); /* protect kernel queues */
|
|
|
|
if (_has_thread_started(thread)) {
|
|
irq_unlock(key);
|
|
return;
|
|
}
|
|
|
|
_mark_thread_as_started(thread);
|
|
|
|
if (_is_thread_ready(thread)) {
|
|
_add_thread_to_ready_q(thread);
|
|
if (_must_switch_threads()) {
|
|
_Swap(key);
|
|
return;
|
|
}
|
|
}
|
|
|
|
irq_unlock(key);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
_SYSCALL_HANDLER1_SIMPLE_VOID(k_thread_start, K_OBJ_THREAD, struct k_thread *);
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_MULTITHREADING
|
|
static void schedule_new_thread(struct k_thread *thread, s32_t delay)
|
|
{
|
|
#ifdef CONFIG_SYS_CLOCK_EXISTS
|
|
if (delay == 0) {
|
|
k_thread_start(thread);
|
|
} else {
|
|
s32_t ticks = _TICK_ALIGN + _ms_to_ticks(delay);
|
|
int key = irq_lock();
|
|
|
|
_add_thread_timeout(thread, NULL, ticks);
|
|
irq_unlock(key);
|
|
}
|
|
#else
|
|
ARG_UNUSED(delay);
|
|
k_thread_start(thread);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
void _setup_new_thread(struct k_thread *new_thread,
|
|
k_thread_stack_t *stack, size_t stack_size,
|
|
k_thread_entry_t entry,
|
|
void *p1, void *p2, void *p3,
|
|
int prio, u32_t options)
|
|
{
|
|
_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3,
|
|
prio, options);
|
|
#ifdef CONFIG_USERSPACE
|
|
new_thread->base.perm_index = get_next_thread_index();
|
|
_k_object_init(new_thread);
|
|
_k_object_init(stack);
|
|
new_thread->stack_obj = stack;
|
|
|
|
/* Any given thread has access to itself */
|
|
k_object_access_grant(new_thread, new_thread);
|
|
|
|
if (options & K_INHERIT_PERMS) {
|
|
_thread_perms_inherit(_current, new_thread);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_MULTITHREADING
|
|
k_tid_t _impl_k_thread_create(struct k_thread *new_thread,
|
|
k_thread_stack_t *stack,
|
|
size_t stack_size, k_thread_entry_t entry,
|
|
void *p1, void *p2, void *p3,
|
|
int prio, u32_t options, s32_t delay)
|
|
{
|
|
__ASSERT(!_is_in_isr(), "Threads may not be created in ISRs");
|
|
_setup_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3,
|
|
prio, options);
|
|
|
|
if (delay != K_FOREVER) {
|
|
schedule_new_thread(new_thread, delay);
|
|
}
|
|
return new_thread;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
_SYSCALL_HANDLER(k_thread_create,
|
|
new_thread_p, stack_p, stack_size, entry, p1, more_args)
|
|
{
|
|
int prio;
|
|
u32_t options, delay, guard_size, total_size;
|
|
struct _k_object *stack_object;
|
|
struct k_thread *new_thread = (struct k_thread *)new_thread_p;
|
|
volatile struct _syscall_10_args *margs =
|
|
(volatile struct _syscall_10_args *)more_args;
|
|
k_thread_stack_t *stack = (k_thread_stack_t *)stack_p;
|
|
|
|
/* The thread and stack objects *must* be in an uninitialized state */
|
|
_SYSCALL_OBJ_NEVER_INIT(new_thread, K_OBJ_THREAD);
|
|
stack_object = _k_object_find(stack);
|
|
_SYSCALL_VERIFY_MSG(!_obj_validation_check(stack_object, stack,
|
|
K_OBJ__THREAD_STACK_ELEMENT,
|
|
_OBJ_INIT_FALSE),
|
|
"bad stack object");
|
|
|
|
/* Verify that the stack size passed in is OK by computing the total
|
|
* size and comparing it with the size value in the object metadata
|
|
*/
|
|
guard_size = (u32_t)K_THREAD_STACK_BUFFER(stack) - (u32_t)stack;
|
|
_SYSCALL_VERIFY_MSG(!__builtin_uadd_overflow(guard_size, stack_size,
|
|
&total_size),
|
|
"stack size overflow (%u+%u)", stack_size,
|
|
guard_size);
|
|
/* They really ought to be equal, make this more strict? */
|
|
_SYSCALL_VERIFY_MSG(total_size <= stack_object->data,
|
|
"stack size %u is too big, max is %u",
|
|
total_size, stack_object->data);
|
|
|
|
/* Verify the struct containing args 6-10 */
|
|
_SYSCALL_MEMORY_READ(margs, sizeof(*margs));
|
|
|
|
/* Stash struct arguments in local variables to prevent switcheroo
|
|
* attacks
|
|
*/
|
|
prio = margs->arg8;
|
|
options = margs->arg9;
|
|
delay = margs->arg10;
|
|
compiler_barrier();
|
|
|
|
/* User threads may only create other user threads and they can't
|
|
* be marked as essential
|
|
*/
|
|
_SYSCALL_VERIFY(options & K_USER);
|
|
_SYSCALL_VERIFY(!(options & K_ESSENTIAL));
|
|
|
|
/* Check validity of prio argument; must be the same or worse priority
|
|
* than the caller
|
|
*/
|
|
_SYSCALL_VERIFY(_VALID_PRIO(prio, NULL));
|
|
_SYSCALL_VERIFY(_is_prio_lower_or_equal(prio, _current->base.prio));
|
|
|
|
_setup_new_thread((struct k_thread *)new_thread, stack, stack_size,
|
|
(k_thread_entry_t)entry, (void *)p1,
|
|
(void *)margs->arg6, (void *)margs->arg7, prio,
|
|
options);
|
|
|
|
if (new_thread->base.perm_index == -1) {
|
|
k_thread_abort(new_thread);
|
|
_SYSCALL_VERIFY_MSG(0, "too many threads created");
|
|
}
|
|
|
|
if (delay != K_FOREVER) {
|
|
schedule_new_thread(new_thread, delay);
|
|
}
|
|
|
|
return new_thread_p;
|
|
}
|
|
#endif /* CONFIG_USERSPACE */
|
|
#endif /* CONFIG_MULTITHREADING */
|
|
|
|
int _impl_k_thread_cancel(k_tid_t tid)
|
|
{
|
|
struct k_thread *thread = tid;
|
|
|
|
int key = irq_lock();
|
|
|
|
if (_has_thread_started(thread) ||
|
|
!_is_thread_timeout_active(thread)) {
|
|
irq_unlock(key);
|
|
return -EINVAL;
|
|
}
|
|
|
|
_abort_thread_timeout(thread);
|
|
_thread_monitor_exit(thread);
|
|
|
|
irq_unlock(key);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
_SYSCALL_HANDLER1_SIMPLE(k_thread_cancel, K_OBJ_THREAD, struct k_thread *);
|
|
#endif
|
|
|
|
static inline int is_in_any_group(struct _static_thread_data *thread_data,
|
|
u32_t groups)
|
|
{
|
|
return !!(thread_data->init_groups & groups);
|
|
}
|
|
|
|
void _k_thread_group_op(u32_t groups, void (*func)(struct k_thread *))
|
|
{
|
|
unsigned int key;
|
|
|
|
__ASSERT(!_is_in_isr(), "");
|
|
|
|
_sched_lock();
|
|
|
|
/* Invoke func() on each static thread in the specified group set. */
|
|
|
|
_FOREACH_STATIC_THREAD(thread_data) {
|
|
if (is_in_any_group(thread_data, groups)) {
|
|
key = irq_lock();
|
|
func(thread_data->init_thread);
|
|
irq_unlock(key);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the current thread is still in a ready state, then let the
|
|
* "unlock scheduler" code determine if any rescheduling is needed.
|
|
*/
|
|
if (_is_thread_ready(_current)) {
|
|
k_sched_unlock();
|
|
return;
|
|
}
|
|
|
|
/* The current thread is no longer in a ready state--reschedule. */
|
|
key = irq_lock();
|
|
_sched_unlock_no_reschedule();
|
|
_Swap(key);
|
|
}
|
|
|
|
void _k_thread_single_start(struct k_thread *thread)
|
|
{
|
|
_mark_thread_as_started(thread);
|
|
|
|
if (_is_thread_ready(thread)) {
|
|
_add_thread_to_ready_q(thread);
|
|
}
|
|
}
|
|
|
|
void _k_thread_single_suspend(struct k_thread *thread)
|
|
{
|
|
if (_is_thread_ready(thread)) {
|
|
_remove_thread_from_ready_q(thread);
|
|
}
|
|
|
|
_mark_thread_as_suspended(thread);
|
|
}
|
|
|
|
void _impl_k_thread_suspend(struct k_thread *thread)
|
|
{
|
|
unsigned int key = irq_lock();
|
|
|
|
_k_thread_single_suspend(thread);
|
|
|
|
if (thread == _current) {
|
|
_Swap(key);
|
|
} else {
|
|
irq_unlock(key);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
_SYSCALL_HANDLER1_SIMPLE_VOID(k_thread_suspend, K_OBJ_THREAD, k_tid_t);
|
|
#endif
|
|
|
|
void _k_thread_single_resume(struct k_thread *thread)
|
|
{
|
|
_mark_thread_as_not_suspended(thread);
|
|
|
|
if (_is_thread_ready(thread)) {
|
|
_add_thread_to_ready_q(thread);
|
|
}
|
|
}
|
|
|
|
void _impl_k_thread_resume(struct k_thread *thread)
|
|
{
|
|
unsigned int key = irq_lock();
|
|
|
|
_k_thread_single_resume(thread);
|
|
|
|
_reschedule_threads(key);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
_SYSCALL_HANDLER1_SIMPLE_VOID(k_thread_resume, K_OBJ_THREAD, k_tid_t);
|
|
#endif
|
|
|
|
void _k_thread_single_abort(struct k_thread *thread)
|
|
{
|
|
if (thread->fn_abort != NULL) {
|
|
thread->fn_abort();
|
|
}
|
|
|
|
if (_is_thread_ready(thread)) {
|
|
_remove_thread_from_ready_q(thread);
|
|
} else {
|
|
if (_is_thread_pending(thread)) {
|
|
_unpend_thread(thread);
|
|
}
|
|
if (_is_thread_timeout_active(thread)) {
|
|
_abort_thread_timeout(thread);
|
|
}
|
|
}
|
|
|
|
thread->base.thread_state |= _THREAD_DEAD;
|
|
#ifdef CONFIG_KERNEL_EVENT_LOGGER_THREAD
|
|
_sys_k_event_logger_thread_exit(thread);
|
|
#endif
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
/* Clear initailized state so that this thread object may be re-used
|
|
* and triggers errors if API calls are made on it from user threads
|
|
*/
|
|
_k_object_uninit(thread->stack_obj);
|
|
_k_object_uninit(thread);
|
|
|
|
if (thread->base.perm_index != -1) {
|
|
free_thread_index(thread->base.perm_index);
|
|
|
|
/* Revoke permissions on thread's ID so that it may be recycled */
|
|
_thread_perms_all_clear(thread);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_MULTITHREADING
|
|
#ifdef CONFIG_USERSPACE
|
|
extern char __object_access_start[];
|
|
extern char __object_access_end[];
|
|
|
|
static void grant_static_access(void)
|
|
{
|
|
struct _k_object_assignment *pos;
|
|
|
|
for (pos = (struct _k_object_assignment *)__object_access_start;
|
|
pos < (struct _k_object_assignment *)__object_access_end;
|
|
pos++) {
|
|
for (int i = 0; pos->objects[i] != NULL; i++) {
|
|
k_object_access_grant(pos->objects[i],
|
|
pos->thread);
|
|
}
|
|
}
|
|
}
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
void _init_static_threads(void)
|
|
{
|
|
unsigned int key;
|
|
|
|
_FOREACH_STATIC_THREAD(thread_data) {
|
|
_setup_new_thread(
|
|
thread_data->init_thread,
|
|
thread_data->init_stack,
|
|
thread_data->init_stack_size,
|
|
thread_data->init_entry,
|
|
thread_data->init_p1,
|
|
thread_data->init_p2,
|
|
thread_data->init_p3,
|
|
thread_data->init_prio,
|
|
thread_data->init_options);
|
|
|
|
thread_data->init_thread->init_data = thread_data;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
grant_static_access();
|
|
#endif
|
|
_sched_lock();
|
|
|
|
/*
|
|
* Non-legacy static threads may be started immediately or after a
|
|
* previously specified delay. Even though the scheduler is locked,
|
|
* ticks can still be delivered and processed. Lock interrupts so
|
|
* that the countdown until execution begins from the same tick.
|
|
*
|
|
* Note that static threads defined using the legacy API have a
|
|
* delay of K_FOREVER.
|
|
*/
|
|
key = irq_lock();
|
|
_FOREACH_STATIC_THREAD(thread_data) {
|
|
if (thread_data->init_delay != K_FOREVER) {
|
|
schedule_new_thread(thread_data->init_thread,
|
|
thread_data->init_delay);
|
|
}
|
|
}
|
|
irq_unlock(key);
|
|
k_sched_unlock();
|
|
}
|
|
#endif
|
|
|
|
void _init_thread_base(struct _thread_base *thread_base, int priority,
|
|
u32_t initial_state, unsigned int options)
|
|
{
|
|
/* k_q_node is initialized upon first insertion in a list */
|
|
|
|
thread_base->user_options = (u8_t)options;
|
|
thread_base->thread_state = (u8_t)initial_state;
|
|
|
|
thread_base->prio = priority;
|
|
|
|
thread_base->sched_locked = 0;
|
|
|
|
/* swap_data does not need to be initialized */
|
|
|
|
_init_thread_timeout(thread_base);
|
|
}
|
|
|
|
u32_t _k_thread_group_mask_get(struct k_thread *thread)
|
|
{
|
|
struct _static_thread_data *thread_data = thread->init_data;
|
|
|
|
return thread_data->init_groups;
|
|
}
|
|
|
|
void _k_thread_group_join(u32_t groups, struct k_thread *thread)
|
|
{
|
|
struct _static_thread_data *thread_data = thread->init_data;
|
|
|
|
thread_data->init_groups |= groups;
|
|
}
|
|
|
|
void _k_thread_group_leave(u32_t groups, struct k_thread *thread)
|
|
{
|
|
struct _static_thread_data *thread_data = thread->init_data;
|
|
|
|
thread_data->init_groups &= ~groups;
|
|
}
|
|
|
|
void k_thread_access_grant(struct k_thread *thread, ...)
|
|
{
|
|
#ifdef CONFIG_USERSPACE
|
|
va_list args;
|
|
va_start(args, thread);
|
|
|
|
while (1) {
|
|
void *object = va_arg(args, void *);
|
|
if (object == NULL) {
|
|
break;
|
|
}
|
|
k_object_access_grant(object, thread);
|
|
}
|
|
va_end(args);
|
|
#else
|
|
ARG_UNUSED(thread);
|
|
#endif
|
|
}
|
|
|
|
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry,
|
|
void *p1, void *p2, void *p3)
|
|
{
|
|
_current->base.user_options |= K_USER;
|
|
_thread_essential_clear();
|
|
#ifdef CONFIG_USERSPACE
|
|
_arch_user_mode_enter(entry, p1, p2, p3);
|
|
#else
|
|
/* XXX In this case we do not reset the stack */
|
|
_thread_entry(entry, p1, p2, p3);
|
|
#endif
|
|
}
|