mirror of
https://github.com/zephyrproject-rtos/zephyr
synced 2025-09-03 09:01:56 +00:00
Convert users of net_buf_put() and net_buf_get() functions to use
non-wrapped putters and getters k_fifo_put() and k_fifo_get().
Special handling of net_bufs in k_fifos is no longer needed after commit
3d306c181f
, since these actions are now
atomic regardless of any net_buf fragments.
Signed-off-by: Henrik Brix Andersen <henrik@brixandersen.dk>
596 lines
13 KiB
C
596 lines
13 KiB
C
/* h4.c - H:4 UART based Bluetooth driver */
|
|
|
|
/*
|
|
* Copyright (c) 2015-2016 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <stddef.h>
|
|
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/arch/cpu.h>
|
|
|
|
#include <zephyr/init.h>
|
|
#include <zephyr/drivers/uart.h>
|
|
#include <zephyr/sys/util.h>
|
|
#include <zephyr/sys/byteorder.h>
|
|
#include <string.h>
|
|
|
|
#include <zephyr/bluetooth/bluetooth.h>
|
|
#include <zephyr/bluetooth/hci.h>
|
|
#include <zephyr/drivers/bluetooth.h>
|
|
|
|
#define LOG_LEVEL CONFIG_BT_HCI_DRIVER_LOG_LEVEL
|
|
#include <zephyr/logging/log.h>
|
|
LOG_MODULE_REGISTER(bt_driver);
|
|
|
|
#include "common/bt_str.h"
|
|
|
|
#include "../util.h"
|
|
|
|
#define DT_DRV_COMPAT zephyr_bt_hci_uart
|
|
|
|
struct h4_data {
|
|
struct {
|
|
struct net_buf *buf;
|
|
struct k_fifo fifo;
|
|
|
|
uint16_t remaining;
|
|
uint16_t discard;
|
|
|
|
bool have_hdr;
|
|
bool discardable;
|
|
|
|
uint8_t hdr_len;
|
|
|
|
uint8_t type;
|
|
union {
|
|
struct bt_hci_evt_hdr evt;
|
|
struct bt_hci_acl_hdr acl;
|
|
struct bt_hci_iso_hdr iso;
|
|
uint8_t hdr[4];
|
|
};
|
|
} rx;
|
|
|
|
struct {
|
|
uint8_t type;
|
|
struct net_buf *buf;
|
|
struct k_fifo fifo;
|
|
} tx;
|
|
|
|
bt_hci_recv_t recv;
|
|
};
|
|
|
|
struct h4_config {
|
|
const struct device *uart;
|
|
k_thread_stack_t *rx_thread_stack;
|
|
size_t rx_thread_stack_size;
|
|
struct k_thread *rx_thread;
|
|
};
|
|
|
|
static inline void h4_get_type(const struct device *dev)
|
|
{
|
|
const struct h4_config *cfg = dev->config;
|
|
struct h4_data *h4 = dev->data;
|
|
|
|
/* Get packet type */
|
|
if (uart_fifo_read(cfg->uart, &h4->rx.type, 1) != 1) {
|
|
LOG_WRN("Unable to read H:4 packet type");
|
|
h4->rx.type = BT_HCI_H4_NONE;
|
|
return;
|
|
}
|
|
|
|
switch (h4->rx.type) {
|
|
case BT_HCI_H4_EVT:
|
|
h4->rx.remaining = sizeof(h4->rx.evt);
|
|
h4->rx.hdr_len = h4->rx.remaining;
|
|
break;
|
|
case BT_HCI_H4_ACL:
|
|
h4->rx.remaining = sizeof(h4->rx.acl);
|
|
h4->rx.hdr_len = h4->rx.remaining;
|
|
break;
|
|
case BT_HCI_H4_ISO:
|
|
if (IS_ENABLED(CONFIG_BT_ISO)) {
|
|
h4->rx.remaining = sizeof(h4->rx.iso);
|
|
h4->rx.hdr_len = h4->rx.remaining;
|
|
break;
|
|
}
|
|
__fallthrough;
|
|
default:
|
|
LOG_ERR("Unknown H:4 type 0x%02x", h4->rx.type);
|
|
h4->rx.type = BT_HCI_H4_NONE;
|
|
}
|
|
}
|
|
|
|
static void h4_read_hdr(const struct device *dev)
|
|
{
|
|
const struct h4_config *cfg = dev->config;
|
|
struct h4_data *h4 = dev->data;
|
|
int bytes_read = h4->rx.hdr_len - h4->rx.remaining;
|
|
int ret;
|
|
|
|
ret = uart_fifo_read(cfg->uart, h4->rx.hdr + bytes_read, h4->rx.remaining);
|
|
if (unlikely(ret < 0)) {
|
|
LOG_ERR("Unable to read from UART (ret %d)", ret);
|
|
} else {
|
|
h4->rx.remaining -= ret;
|
|
}
|
|
}
|
|
|
|
static inline void get_acl_hdr(const struct device *dev)
|
|
{
|
|
struct h4_data *h4 = dev->data;
|
|
|
|
h4_read_hdr(dev);
|
|
|
|
if (!h4->rx.remaining) {
|
|
struct bt_hci_acl_hdr *hdr = &h4->rx.acl;
|
|
|
|
h4->rx.remaining = sys_le16_to_cpu(hdr->len);
|
|
LOG_DBG("Got ACL header. Payload %u bytes", h4->rx.remaining);
|
|
h4->rx.have_hdr = true;
|
|
}
|
|
}
|
|
|
|
static inline void get_iso_hdr(const struct device *dev)
|
|
{
|
|
struct h4_data *h4 = dev->data;
|
|
|
|
h4_read_hdr(dev);
|
|
|
|
if (!h4->rx.remaining) {
|
|
struct bt_hci_iso_hdr *hdr = &h4->rx.iso;
|
|
|
|
h4->rx.remaining = bt_iso_hdr_len(sys_le16_to_cpu(hdr->len));
|
|
LOG_DBG("Got ISO header. Payload %u bytes", h4->rx.remaining);
|
|
h4->rx.have_hdr = true;
|
|
}
|
|
}
|
|
|
|
static inline void get_evt_hdr(const struct device *dev)
|
|
{
|
|
struct h4_data *h4 = dev->data;
|
|
|
|
struct bt_hci_evt_hdr *hdr = &h4->rx.evt;
|
|
|
|
h4_read_hdr(dev);
|
|
|
|
if (h4->rx.hdr_len == sizeof(*hdr) && h4->rx.remaining < sizeof(*hdr)) {
|
|
switch (h4->rx.evt.evt) {
|
|
case BT_HCI_EVT_LE_META_EVENT:
|
|
h4->rx.remaining++;
|
|
h4->rx.hdr_len++;
|
|
break;
|
|
#if defined(CONFIG_BT_CLASSIC)
|
|
case BT_HCI_EVT_INQUIRY_RESULT_WITH_RSSI:
|
|
case BT_HCI_EVT_EXTENDED_INQUIRY_RESULT:
|
|
h4->rx.discardable = true;
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (!h4->rx.remaining) {
|
|
if (h4->rx.evt.evt == BT_HCI_EVT_LE_META_EVENT &&
|
|
(h4->rx.hdr[sizeof(*hdr)] == BT_HCI_EVT_LE_ADVERTISING_REPORT)) {
|
|
LOG_DBG("Marking adv report as discardable");
|
|
h4->rx.discardable = true;
|
|
}
|
|
|
|
h4->rx.remaining = hdr->len - (h4->rx.hdr_len - sizeof(*hdr));
|
|
LOG_DBG("Got event header. Payload %u bytes", hdr->len);
|
|
h4->rx.have_hdr = true;
|
|
}
|
|
}
|
|
|
|
|
|
static inline void copy_hdr(struct h4_data *h4)
|
|
{
|
|
net_buf_add_mem(h4->rx.buf, h4->rx.hdr, h4->rx.hdr_len);
|
|
}
|
|
|
|
static void reset_rx(struct h4_data *h4)
|
|
{
|
|
h4->rx.type = BT_HCI_H4_NONE;
|
|
h4->rx.remaining = 0U;
|
|
h4->rx.have_hdr = false;
|
|
h4->rx.hdr_len = 0U;
|
|
h4->rx.discardable = false;
|
|
}
|
|
|
|
static struct net_buf *get_rx(struct h4_data *h4, k_timeout_t timeout)
|
|
{
|
|
LOG_DBG("type 0x%02x, evt 0x%02x", h4->rx.type, h4->rx.evt.evt);
|
|
|
|
switch (h4->rx.type) {
|
|
case BT_HCI_H4_EVT:
|
|
return bt_buf_get_evt(h4->rx.evt.evt, h4->rx.discardable, timeout);
|
|
case BT_HCI_H4_ACL:
|
|
return bt_buf_get_rx(BT_BUF_ACL_IN, timeout);
|
|
case BT_HCI_H4_ISO:
|
|
if (IS_ENABLED(CONFIG_BT_ISO)) {
|
|
return bt_buf_get_rx(BT_BUF_ISO_IN, timeout);
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void rx_thread(void *p1, void *p2, void *p3)
|
|
{
|
|
const struct device *dev = p1;
|
|
const struct h4_config *cfg = dev->config;
|
|
struct h4_data *h4 = dev->data;
|
|
struct net_buf *buf;
|
|
|
|
ARG_UNUSED(p2);
|
|
ARG_UNUSED(p3);
|
|
|
|
LOG_DBG("started");
|
|
|
|
while (1) {
|
|
LOG_DBG("rx.buf %p", h4->rx.buf);
|
|
|
|
/* We can only do the allocation if we know the initial
|
|
* header, since Command Complete/Status events must use the
|
|
* original command buffer (if available).
|
|
*/
|
|
if (h4->rx.have_hdr && !h4->rx.buf) {
|
|
h4->rx.buf = get_rx(h4, K_FOREVER);
|
|
LOG_DBG("Got rx.buf %p", h4->rx.buf);
|
|
if (h4->rx.remaining > net_buf_tailroom(h4->rx.buf)) {
|
|
LOG_ERR("Not enough space in buffer");
|
|
h4->rx.discard = h4->rx.remaining;
|
|
reset_rx(h4);
|
|
} else {
|
|
copy_hdr(h4);
|
|
}
|
|
}
|
|
|
|
/* Let the ISR continue receiving new packets */
|
|
uart_irq_rx_enable(cfg->uart);
|
|
|
|
buf = k_fifo_get(&h4->rx.fifo, K_FOREVER);
|
|
do {
|
|
uart_irq_rx_enable(cfg->uart);
|
|
|
|
LOG_DBG("Calling bt_recv(%p)", buf);
|
|
h4->recv(dev, buf);
|
|
|
|
/* Give other threads a chance to run if the ISR
|
|
* is receiving data so fast that rx.fifo never
|
|
* or very rarely goes empty.
|
|
*/
|
|
k_yield();
|
|
|
|
uart_irq_rx_disable(cfg->uart);
|
|
buf = k_fifo_get(&h4->rx.fifo, K_NO_WAIT);
|
|
} while (buf);
|
|
}
|
|
}
|
|
|
|
static size_t h4_discard(const struct device *uart, size_t len)
|
|
{
|
|
uint8_t buf[33];
|
|
int err;
|
|
|
|
err = uart_fifo_read(uart, buf, MIN(len, sizeof(buf)));
|
|
if (unlikely(err < 0)) {
|
|
LOG_ERR("Unable to read from UART (err %d)", err);
|
|
return 0;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static inline void read_payload(const struct device *dev)
|
|
{
|
|
const struct h4_config *cfg = dev->config;
|
|
struct h4_data *h4 = dev->data;
|
|
struct net_buf *buf;
|
|
int read;
|
|
|
|
if (!h4->rx.buf) {
|
|
size_t buf_tailroom;
|
|
|
|
h4->rx.buf = get_rx(h4, K_NO_WAIT);
|
|
if (!h4->rx.buf) {
|
|
if (h4->rx.discardable) {
|
|
LOG_WRN("Discarding event 0x%02x", h4->rx.evt.evt);
|
|
h4->rx.discard = h4->rx.remaining;
|
|
reset_rx(h4);
|
|
return;
|
|
}
|
|
|
|
LOG_WRN("Failed to allocate, deferring to rx_thread");
|
|
uart_irq_rx_disable(cfg->uart);
|
|
return;
|
|
}
|
|
|
|
LOG_DBG("Allocated rx.buf %p", h4->rx.buf);
|
|
|
|
buf_tailroom = net_buf_tailroom(h4->rx.buf);
|
|
if (buf_tailroom < h4->rx.remaining) {
|
|
LOG_ERR("Not enough space in buffer %u/%zu", h4->rx.remaining,
|
|
buf_tailroom);
|
|
h4->rx.discard = h4->rx.remaining;
|
|
reset_rx(h4);
|
|
return;
|
|
}
|
|
|
|
copy_hdr(h4);
|
|
}
|
|
|
|
read = uart_fifo_read(cfg->uart, net_buf_tail(h4->rx.buf), h4->rx.remaining);
|
|
if (unlikely(read < 0)) {
|
|
LOG_ERR("Failed to read UART (err %d)", read);
|
|
return;
|
|
}
|
|
|
|
net_buf_add(h4->rx.buf, read);
|
|
h4->rx.remaining -= read;
|
|
|
|
LOG_DBG("got %d bytes, remaining %u", read, h4->rx.remaining);
|
|
LOG_DBG("Payload (len %u): %s", h4->rx.buf->len,
|
|
bt_hex(h4->rx.buf->data, h4->rx.buf->len));
|
|
|
|
if (h4->rx.remaining) {
|
|
return;
|
|
}
|
|
|
|
buf = h4->rx.buf;
|
|
h4->rx.buf = NULL;
|
|
|
|
if (h4->rx.type == BT_HCI_H4_EVT) {
|
|
bt_buf_set_type(buf, BT_BUF_EVT);
|
|
} else {
|
|
bt_buf_set_type(buf, BT_BUF_ACL_IN);
|
|
}
|
|
|
|
reset_rx(h4);
|
|
|
|
LOG_DBG("Putting buf %p to rx fifo", buf);
|
|
k_fifo_put(&h4->rx.fifo, buf);
|
|
}
|
|
|
|
static inline void read_header(const struct device *dev)
|
|
{
|
|
struct h4_data *h4 = dev->data;
|
|
|
|
switch (h4->rx.type) {
|
|
case BT_HCI_H4_NONE:
|
|
h4_get_type(dev);
|
|
return;
|
|
case BT_HCI_H4_EVT:
|
|
get_evt_hdr(dev);
|
|
break;
|
|
case BT_HCI_H4_ACL:
|
|
get_acl_hdr(dev);
|
|
break;
|
|
case BT_HCI_H4_ISO:
|
|
if (IS_ENABLED(CONFIG_BT_ISO)) {
|
|
get_iso_hdr(dev);
|
|
break;
|
|
}
|
|
__fallthrough;
|
|
default:
|
|
CODE_UNREACHABLE;
|
|
return;
|
|
}
|
|
|
|
if (h4->rx.have_hdr && h4->rx.buf) {
|
|
if (h4->rx.remaining > net_buf_tailroom(h4->rx.buf)) {
|
|
LOG_ERR("Not enough space in buffer");
|
|
h4->rx.discard = h4->rx.remaining;
|
|
reset_rx(h4);
|
|
} else {
|
|
copy_hdr(h4);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void process_tx(const struct device *dev)
|
|
{
|
|
const struct h4_config *cfg = dev->config;
|
|
struct h4_data *h4 = dev->data;
|
|
int bytes;
|
|
|
|
if (!h4->tx.buf) {
|
|
h4->tx.buf = k_fifo_get(&h4->tx.fifo, K_NO_WAIT);
|
|
if (!h4->tx.buf) {
|
|
LOG_ERR("TX interrupt but no pending buffer!");
|
|
uart_irq_tx_disable(cfg->uart);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!h4->tx.type) {
|
|
switch (bt_buf_get_type(h4->tx.buf)) {
|
|
case BT_BUF_ACL_OUT:
|
|
h4->tx.type = BT_HCI_H4_ACL;
|
|
break;
|
|
case BT_BUF_CMD:
|
|
h4->tx.type = BT_HCI_H4_CMD;
|
|
break;
|
|
case BT_BUF_ISO_OUT:
|
|
if (IS_ENABLED(CONFIG_BT_ISO)) {
|
|
h4->tx.type = BT_HCI_H4_ISO;
|
|
break;
|
|
}
|
|
__fallthrough;
|
|
default:
|
|
LOG_ERR("Unknown buffer type");
|
|
goto done;
|
|
}
|
|
|
|
bytes = uart_fifo_fill(cfg->uart, &h4->tx.type, 1);
|
|
if (bytes != 1) {
|
|
LOG_WRN("Unable to send H:4 type");
|
|
h4->tx.type = BT_HCI_H4_NONE;
|
|
return;
|
|
}
|
|
}
|
|
|
|
bytes = uart_fifo_fill(cfg->uart, h4->tx.buf->data, h4->tx.buf->len);
|
|
if (unlikely(bytes < 0)) {
|
|
LOG_ERR("Unable to write to UART (err %d)", bytes);
|
|
} else {
|
|
net_buf_pull(h4->tx.buf, bytes);
|
|
}
|
|
|
|
if (h4->tx.buf->len) {
|
|
return;
|
|
}
|
|
|
|
done:
|
|
h4->tx.type = BT_HCI_H4_NONE;
|
|
net_buf_unref(h4->tx.buf);
|
|
h4->tx.buf = k_fifo_get(&h4->tx.fifo, K_NO_WAIT);
|
|
if (!h4->tx.buf) {
|
|
uart_irq_tx_disable(cfg->uart);
|
|
}
|
|
}
|
|
|
|
static inline void process_rx(const struct device *dev)
|
|
{
|
|
const struct h4_config *cfg = dev->config;
|
|
struct h4_data *h4 = dev->data;
|
|
|
|
LOG_DBG("remaining %u discard %u have_hdr %u rx.buf %p len %u",
|
|
h4->rx.remaining, h4->rx.discard, h4->rx.have_hdr, h4->rx.buf,
|
|
h4->rx.buf ? h4->rx.buf->len : 0);
|
|
|
|
if (h4->rx.discard) {
|
|
h4->rx.discard -= h4_discard(cfg->uart, h4->rx.discard);
|
|
return;
|
|
}
|
|
|
|
if (h4->rx.have_hdr) {
|
|
read_payload(dev);
|
|
} else {
|
|
read_header(dev);
|
|
}
|
|
}
|
|
|
|
static void bt_uart_isr(const struct device *uart, void *user_data)
|
|
{
|
|
struct device *dev = user_data;
|
|
|
|
while (uart_irq_update(uart) && uart_irq_is_pending(uart)) {
|
|
if (uart_irq_tx_ready(uart)) {
|
|
process_tx(dev);
|
|
}
|
|
|
|
if (uart_irq_rx_ready(uart)) {
|
|
process_rx(dev);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int h4_send(const struct device *dev, struct net_buf *buf)
|
|
{
|
|
const struct h4_config *cfg = dev->config;
|
|
struct h4_data *h4 = dev->data;
|
|
|
|
LOG_DBG("buf %p type %u len %u", buf, bt_buf_get_type(buf), buf->len);
|
|
|
|
k_fifo_put(&h4->tx.fifo, buf);
|
|
uart_irq_tx_enable(cfg->uart);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Setup the HCI transport, which usually means to reset the Bluetooth IC
|
|
*
|
|
* @param dev The device structure for the bus connecting to the IC
|
|
*
|
|
* @return 0 on success, negative error value on failure
|
|
*/
|
|
int __weak bt_hci_transport_setup(const struct device *uart)
|
|
{
|
|
h4_discard(uart, 32);
|
|
return 0;
|
|
}
|
|
|
|
static int h4_open(const struct device *dev, bt_hci_recv_t recv)
|
|
{
|
|
const struct h4_config *cfg = dev->config;
|
|
struct h4_data *h4 = dev->data;
|
|
int ret;
|
|
k_tid_t tid;
|
|
|
|
LOG_DBG("");
|
|
|
|
uart_irq_rx_disable(cfg->uart);
|
|
uart_irq_tx_disable(cfg->uart);
|
|
|
|
ret = bt_hci_transport_setup(cfg->uart);
|
|
if (ret < 0) {
|
|
return -EIO;
|
|
}
|
|
|
|
h4->recv = recv;
|
|
|
|
uart_irq_callback_user_data_set(cfg->uart, bt_uart_isr, (void *)dev);
|
|
|
|
tid = k_thread_create(cfg->rx_thread, cfg->rx_thread_stack,
|
|
cfg->rx_thread_stack_size,
|
|
rx_thread, (void *)dev, NULL, NULL,
|
|
K_PRIO_COOP(CONFIG_BT_RX_PRIO),
|
|
0, K_NO_WAIT);
|
|
k_thread_name_set(tid, "bt_rx_thread");
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if defined(CONFIG_BT_HCI_SETUP)
|
|
static int h4_setup(const struct device *dev, const struct bt_hci_setup_params *params)
|
|
{
|
|
const struct h4_config *cfg = dev->config;
|
|
|
|
ARG_UNUSED(params);
|
|
|
|
/* Extern bt_h4_vnd_setup function.
|
|
* This function executes vendor-specific commands sequence to
|
|
* initialize BT Controller before BT Host executes Reset sequence.
|
|
* bt_h4_vnd_setup function must be implemented in vendor-specific HCI
|
|
* extansion module if CONFIG_BT_HCI_SETUP is enabled.
|
|
*/
|
|
extern int bt_h4_vnd_setup(const struct device *dev);
|
|
|
|
return bt_h4_vnd_setup(cfg->uart);
|
|
}
|
|
#endif
|
|
|
|
static const struct bt_hci_driver_api h4_driver_api = {
|
|
.open = h4_open,
|
|
.send = h4_send,
|
|
#if defined(CONFIG_BT_HCI_SETUP)
|
|
.setup = h4_setup,
|
|
#endif
|
|
};
|
|
|
|
#define BT_UART_DEVICE_INIT(inst) \
|
|
static K_KERNEL_STACK_DEFINE(rx_thread_stack_##inst, CONFIG_BT_DRV_RX_STACK_SIZE); \
|
|
static struct k_thread rx_thread_##inst; \
|
|
static const struct h4_config h4_config_##inst = { \
|
|
.uart = DEVICE_DT_GET(DT_INST_PARENT(inst)), \
|
|
.rx_thread_stack = rx_thread_stack_##inst, \
|
|
.rx_thread_stack_size = K_KERNEL_STACK_SIZEOF(rx_thread_stack_##inst), \
|
|
.rx_thread = &rx_thread_##inst, \
|
|
}; \
|
|
static struct h4_data h4_data_##inst = { \
|
|
.rx = { \
|
|
.fifo = Z_FIFO_INITIALIZER(h4_data_##inst.rx.fifo), \
|
|
}, \
|
|
.tx = { \
|
|
.fifo = Z_FIFO_INITIALIZER(h4_data_##inst.tx.fifo), \
|
|
}, \
|
|
}; \
|
|
DEVICE_DT_INST_DEFINE(inst, NULL, NULL, &h4_data_##inst, &h4_config_##inst, \
|
|
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &h4_driver_api)
|
|
|
|
DT_INST_FOREACH_STATUS_OKAY(BT_UART_DEVICE_INIT)
|