zephyr/drivers/adc/adc_mcux_gau_adc.c
Pieter De Gendt 8442b6a83f drivers: adc: Place API into iterable section
Move all adc driver api structs into an iterable section, this allows us
to verify if an api pointer is located in compatible linker section.

Signed-off-by: Pieter De Gendt <pieter.degendt@basalte.be>
2024-11-29 14:50:40 +01:00

393 lines
12 KiB
C

/*
* Copyright 2022-2024 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_gau_adc
#include <zephyr/drivers/adc.h>
#include <zephyr/irq.h>
#include <errno.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(adc_mcux_gau_adc, CONFIG_ADC_LOG_LEVEL);
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
#include <fsl_adc.h>
#define NUM_ADC_CHANNELS 16
struct mcux_gau_adc_config {
ADC_Type *base;
void (*irq_config_func)(const struct device *dev);
adc_clock_divider_t clock_div;
adc_analog_portion_power_mode_t power_mode;
bool input_gain_buffer;
adc_calibration_ref_t cal_volt;
};
struct mcux_gau_adc_data {
const struct device *dev;
struct adc_context ctx;
adc_channel_source_t channel_sources[NUM_ADC_CHANNELS];
uint8_t scan_length;
uint16_t *results;
size_t results_length;
uint16_t *repeat;
struct k_work read_samples_work;
};
static int mcux_gau_adc_channel_setup(const struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
const struct mcux_gau_adc_config *config = dev->config;
struct mcux_gau_adc_data *data = dev->data;
ADC_Type *base = config->base;
uint8_t channel_id = channel_cfg->channel_id;
uint8_t source_channel = channel_cfg->input_positive;
uint32_t tmp_reg;
if (channel_cfg->differential) {
LOG_ERR("Differential channels not yet supported");
return -ENOTSUP;
}
if (channel_id >= NUM_ADC_CHANNELS) {
LOG_ERR("ADC does not support more than %d channels", NUM_ADC_CHANNELS);
return -ENOTSUP;
}
if (source_channel > 12 && source_channel != 15) {
LOG_ERR("Invalid source channel");
return -EINVAL;
}
/* Set Acquisition/Warmup time */
tmp_reg = base->ADC_REG_INTERVAL;
base->ADC_REG_INTERVAL &= ~ADC_ADC_REG_INTERVAL_WARMUP_TIME_MASK;
base->ADC_REG_INTERVAL &= ~ADC_ADC_REG_INTERVAL_BYPASS_WARMUP_MASK;
if (channel_cfg->acquisition_time == 0) {
base->ADC_REG_INTERVAL |= ADC_ADC_REG_INTERVAL_BYPASS_WARMUP_MASK;
} else if (channel_cfg->acquisition_time <= 32) {
base->ADC_REG_INTERVAL |=
ADC_ADC_REG_INTERVAL_WARMUP_TIME(channel_cfg->acquisition_time - 1);
} else {
LOG_ERR("Invalid acquisition time requested of ADC");
return -EINVAL;
}
/* If user changed the warmup time, warn */
if (base->ADC_REG_INTERVAL != tmp_reg) {
LOG_WRN("Acquisition/Warmup time is global to entire ADC peripheral, "
"i.e. channel_setup will override this property for all previous channels.");
}
/* Set Input Gain */
tmp_reg = base->ADC_REG_ANA;
base->ADC_REG_ANA &= ~ADC_ADC_REG_ANA_INBUF_GAIN_MASK;
if (channel_cfg->gain == ADC_GAIN_1) {
base->ADC_REG_ANA |= ADC_ADC_REG_ANA_INBUF_GAIN(kADC_InputGain1);
} else if (channel_cfg->gain == ADC_GAIN_1_2) {
base->ADC_REG_ANA |= ADC_ADC_REG_ANA_INBUF_GAIN(kADC_InputGain0P5);
} else if (channel_cfg->gain == ADC_GAIN_2) {
base->ADC_REG_ANA |= ADC_ADC_REG_ANA_INBUF_GAIN(kADC_InputGain2);
} else {
LOG_ERR("Invalid gain");
return -EINVAL;
}
/* If user changed the gain, warn */
if (base->ADC_REG_ANA != tmp_reg) {
LOG_WRN("Input gain is global to entire ADC peripheral, "
"i.e. channel_setup will override this property for all previous channels.");
}
/* Set Reference voltage of ADC */
tmp_reg = base->ADC_REG_ANA;
base->ADC_REG_ANA &= ~ADC_ADC_REG_ANA_VREF_SEL_MASK;
if (channel_cfg->reference == ADC_REF_INTERNAL) {
base->ADC_REG_ANA |= ADC_ADC_REG_ANA_VREF_SEL(kADC_Vref1P2V);
} else if (channel_cfg->reference == ADC_REF_EXTERNAL0) {
base->ADC_REG_ANA |= ADC_ADC_REG_ANA_VREF_SEL(kADC_VrefExternal);
} else if (channel_cfg->reference == ADC_REF_VDD_1) {
base->ADC_REG_ANA |= ADC_ADC_REG_ANA_VREF_SEL(kADC_Vref1P8V);
} else {
LOG_ERR("Vref not supported");
return -ENOTSUP;
}
/* if user changed the reference voltage, warn */
if (base->ADC_REG_ANA != tmp_reg) {
LOG_WRN("Reference voltage is global to entire ADC peripheral, "
"i.e. channel_setup will override this property for all previous channels.");
}
data->channel_sources[channel_id] = source_channel;
return 0;
}
static void mcux_gau_adc_read_samples(struct k_work *work)
{
struct mcux_gau_adc_data *data =
CONTAINER_OF(work, struct mcux_gau_adc_data,
read_samples_work);
const struct device *dev = data->dev;
const struct mcux_gau_adc_config *config = dev->config;
ADC_Type *base = config->base;
/* using this variable to prevent buffer overflow */
size_t length = data->results_length;
while ((ADC_GetFifoDataCount(base) > 0) && (--length > 0)) {
*(data->results++) = (uint16_t)ADC_GetConversionResult(base);
}
adc_context_on_sampling_done(&data->ctx, dev);
}
static void mcux_gau_adc_isr(const struct device *dev)
{
const struct mcux_gau_adc_config *config = dev->config;
struct mcux_gau_adc_data *data = dev->data;
ADC_Type *base = config->base;
if (ADC_GetStatusFlags(base) & kADC_DataReadyInterruptFlag) {
/* Clear flag to avoid infinite interrupt */
ADC_ClearStatusFlags(base, kADC_DataReadyInterruptFlag);
/* offload and do not block during irq */
k_work_submit(&data->read_samples_work);
} else {
LOG_ERR("ADC received unimplemented interrupt");
}
}
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct mcux_gau_adc_data *data =
CONTAINER_OF(ctx, struct mcux_gau_adc_data, ctx);
const struct mcux_gau_adc_config *config = data->dev->config;
ADC_Type *base = config->base;
ADC_StopConversion(base);
ADC_DoSoftwareTrigger(base);
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
bool repeat_sampling)
{
struct mcux_gau_adc_data *data =
CONTAINER_OF(ctx, struct mcux_gau_adc_data, ctx);
if (repeat_sampling) {
data->results = data->repeat;
}
}
static int mcux_gau_adc_do_read(const struct device *dev,
const struct adc_sequence *sequence)
{
const struct mcux_gau_adc_config *config = dev->config;
ADC_Type *base = config->base;
struct mcux_gau_adc_data *data = dev->data;
uint8_t num_channels = 0;
/* if user selected channel >= NUM_ADC_CHANNELS that is invalid */
if (sequence->channels & (0xFFFF << NUM_ADC_CHANNELS)) {
LOG_ERR("Invalid channels selected for sequence");
return -EINVAL;
}
/* Count channels */
for (int i = 0; i < NUM_ADC_CHANNELS; i++) {
num_channels += ((sequence->channels & (0x1 << i)) ? 1 : 0);
}
/* Buffer must hold (number of samples per channel) * (number of channels) samples */
if ((sequence->options != NULL && sequence->buffer_size <
((1 + sequence->options->extra_samplings) * num_channels)) ||
(sequence->options == NULL && sequence->buffer_size < num_channels)) {
LOG_ERR("Buffer size too small");
return -ENOMEM;
}
/* Set scan length in data struct for isr to understand & set scan length register */
base->ADC_REG_CONFIG &= ~ADC_ADC_REG_CONFIG_SCAN_LENGTH_MASK;
data->scan_length = num_channels;
/* Register Value is 1 less than what it represents */
base->ADC_REG_CONFIG |= ADC_ADC_REG_CONFIG_SCAN_LENGTH(data->scan_length - 1);
/* Set up scan channels */
for (int channel = 0; channel < NUM_ADC_CHANNELS; channel++) {
if (sequence->channels & (0x1 << channel)) {
ADC_SetScanChannel(base,
data->scan_length - num_channels--,
data->channel_sources[channel]);
}
}
/* Set resolution of ADC */
base->ADC_REG_ANA &= ~ADC_ADC_REG_ANA_RES_SEL_MASK;
/* odd numbers are for differential channels */
if (sequence->resolution == 12 || sequence->resolution == 11) {
base->ADC_REG_ANA |= ADC_ADC_REG_ANA_RES_SEL(kADC_Resolution12Bit);
} else if (sequence->resolution == 14 || sequence->resolution == 13) {
base->ADC_REG_ANA |= ADC_ADC_REG_ANA_RES_SEL(kADC_Resolution14Bit);
} else if (sequence->resolution == 16 || sequence->resolution == 15) {
base->ADC_REG_ANA |= ADC_ADC_REG_ANA_RES_SEL(kADC_Resolution16Bit);
} else {
LOG_ERR("Invalid resolution");
return -EINVAL;
}
/* Set oversampling */
base->ADC_REG_CONFIG &= ~ADC_ADC_REG_CONFIG_AVG_SEL_MASK;
if (sequence->oversampling == 0) {
base->ADC_REG_CONFIG |= ADC_ADC_REG_CONFIG_AVG_SEL(kADC_AverageNone);
} else if (sequence->oversampling == 1) {
base->ADC_REG_CONFIG |= ADC_ADC_REG_CONFIG_AVG_SEL(kADC_Average2);
} else if (sequence->oversampling == 2) {
base->ADC_REG_CONFIG |= ADC_ADC_REG_CONFIG_AVG_SEL(kADC_Average4);
} else if (sequence->oversampling == 3) {
base->ADC_REG_CONFIG |= ADC_ADC_REG_CONFIG_AVG_SEL(kADC_Average8);
} else if (sequence->oversampling == 4) {
base->ADC_REG_CONFIG |= ADC_ADC_REG_CONFIG_AVG_SEL(kADC_Average16);
} else {
LOG_ERR("Invalid oversampling setting");
return -EINVAL;
}
/* Calibrate if requested */
if (sequence->calibrate) {
if (ADC_DoAutoCalibration(base, config->cal_volt)) {
LOG_WRN("Calibration of ADC failed!");
}
}
data->results = sequence->buffer;
data->results_length = sequence->buffer_size;
data->repeat = sequence->buffer;
adc_context_start_read(&data->ctx, sequence);
return adc_context_wait_for_completion(&data->ctx);
}
static int mcux_gau_adc_read(const struct device *dev,
const struct adc_sequence *sequence)
{
struct mcux_gau_adc_data *data = dev->data;
int error;
adc_context_lock(&data->ctx, false, NULL);
error = mcux_gau_adc_do_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
#ifdef CONFIG_ADC_ASYNC
static int mcux_gau_adc_read_async(const struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
struct mcux_gau_adc_data *data = dev->data;
int error;
adc_context_lock(&data->ctx, true, async);
error = mcux_gau_adc_do_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
#endif
static int mcux_gau_adc_init(const struct device *dev)
{
const struct mcux_gau_adc_config *config = dev->config;
struct mcux_gau_adc_data *data = dev->data;
ADC_Type *base = config->base;
adc_config_t adc_config;
data->dev = dev;
LOG_DBG("Initializing ADC");
ADC_GetDefaultConfig(&adc_config);
/* DT configs */
adc_config.clockDivider = config->clock_div;
adc_config.powerMode = config->power_mode;
adc_config.enableInputGainBuffer = config->input_gain_buffer;
adc_config.triggerSource = kADC_TriggerSourceSoftware;
adc_config.inputMode = kADC_InputSingleEnded;
/* One shot meets the needs of the current zephyr adc context/api */
adc_config.conversionMode = kADC_ConversionOneShot;
/* since using one shot mode, just interrupt on one sample (agnostic to # channels) */
adc_config.fifoThreshold = kADC_FifoThresholdData1;
/* 32 bit width not supported in this driver; zephyr seems to use 16 bit */
adc_config.resultWidth = kADC_ResultWidth16;
adc_config.enableDMA = false;
adc_config.enableADC = true;
ADC_Init(base, &adc_config);
if (ADC_DoAutoCalibration(base, config->cal_volt)) {
LOG_WRN("Calibration of ADC failed!");
}
ADC_ClearStatusFlags(base, kADC_DataReadyInterruptFlag);
config->irq_config_func(dev);
ADC_EnableInterrupts(base, kADC_DataReadyInterruptEnable);
k_work_init(&data->read_samples_work, &mcux_gau_adc_read_samples);
adc_context_init(&data->ctx);
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
static DEVICE_API(adc, mcux_gau_adc_driver_api) = {
.channel_setup = mcux_gau_adc_channel_setup,
.read = mcux_gau_adc_read,
#ifdef CONFIG_ADC_ASYNC
.read_async = mcux_gau_adc_read_async,
#endif
.ref_internal = 1200,
};
#define GAU_ADC_MCUX_INIT(n) \
\
static void mcux_gau_adc_config_func_##n(const struct device *dev); \
\
static const struct mcux_gau_adc_config mcux_gau_adc_config_##n = { \
.base = (ADC_Type *)DT_INST_REG_ADDR(n), \
.irq_config_func = mcux_gau_adc_config_func_##n, \
/* Minus one because DT starts at 1, HAL enum starts at 0 */ \
.clock_div = DT_INST_PROP(n, nxp_clock_divider) - 1, \
.power_mode = DT_INST_ENUM_IDX(n, nxp_power_mode), \
.input_gain_buffer = DT_INST_PROP(n, nxp_input_buffer), \
.cal_volt = DT_INST_ENUM_IDX(n, nxp_calibration_voltage), \
}; \
\
static struct mcux_gau_adc_data mcux_gau_adc_data_##n = {0}; \
\
DEVICE_DT_INST_DEFINE(n, &mcux_gau_adc_init, NULL, \
&mcux_gau_adc_data_##n, &mcux_gau_adc_config_##n, \
POST_KERNEL, CONFIG_ADC_INIT_PRIORITY, \
&mcux_gau_adc_driver_api); \
\
static void mcux_gau_adc_config_func_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \
mcux_gau_adc_isr, DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQN(n)); \
}
DT_INST_FOREACH_STATUS_OKAY(GAU_ADC_MCUX_INIT)