zephyr/kernel/userspace.c
Leandro Pereira 39dc7d03f7 scripts: gen_kobject_list: Generate enums and case statements
Adding a new kernel object type or driver subsystem requires changes
in various different places.  This patch makes it easier to create
those devices by generating as much as possible in compile time.

No behavior change.

Signed-off-by: Leandro Pereira <leandro.pereira@intel.com>
2018-04-26 02:57:12 +05:30

457 lines
9.8 KiB
C

/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <kernel.h>
#include <string.h>
#include <misc/printk.h>
#include <misc/rb.h>
#include <kernel_structs.h>
#include <sys_io.h>
#include <ksched.h>
#include <syscall.h>
#include <syscall_handler.h>
#include <device.h>
#include <init.h>
#include <logging/sys_log.h>
#define MAX_THREAD_BITS (CONFIG_MAX_THREAD_BYTES * 8)
const char *otype_to_str(enum k_objects otype)
{
/* -fdata-sections doesn't work right except in very very recent
* GCC and these literal strings would appear in the binary even if
* otype_to_str was omitted by the linker
*/
#ifdef CONFIG_PRINTK
switch (otype) {
/* otype-to-str.h is generated automatically during build by
* gen_kobject_list.py
*/
#include <otype-to-str.h>
default:
return "?";
}
#else
ARG_UNUSED(otype);
return NULL;
#endif
}
struct perm_ctx {
int parent_id;
int child_id;
struct k_thread *parent;
};
#ifdef CONFIG_DYNAMIC_OBJECTS
struct dyn_obj {
struct _k_object kobj;
struct rbnode node; /* must be immediately before data member */
u8_t data[]; /* The object itself */
};
struct visit_ctx {
_wordlist_cb_func_t func;
void *original_context;
};
extern struct _k_object *_k_object_gperf_find(void *obj);
extern void _k_object_gperf_wordlist_foreach(_wordlist_cb_func_t func,
void *context);
static int node_lessthan(struct rbnode *a, struct rbnode *b);
static struct rbtree obj_rb_tree = {
.lessthan_fn = node_lessthan
};
/* TODO: incorporate auto-gen with Leandro's patch */
static size_t obj_size_get(enum k_objects otype)
{
switch (otype) {
case K_OBJ_ALERT:
return sizeof(struct k_alert);
case K_OBJ_MSGQ:
return sizeof(struct k_msgq);
case K_OBJ_MUTEX:
return sizeof(struct k_mutex);
case K_OBJ_PIPE:
return sizeof(struct k_pipe);
case K_OBJ_SEM:
return sizeof(struct k_sem);
case K_OBJ_STACK:
return sizeof(struct k_stack);
case K_OBJ_THREAD:
return sizeof(struct k_thread);
case K_OBJ_TIMER:
return sizeof(struct k_timer);
default:
return sizeof(struct device);
}
}
static int node_lessthan(struct rbnode *a, struct rbnode *b)
{
return a < b;
}
static inline struct dyn_obj *node_to_dyn_obj(struct rbnode *node)
{
return CONTAINER_OF(node, struct dyn_obj, node);
}
static struct dyn_obj *dyn_object_find(void *obj)
{
struct rbnode *node;
struct dyn_obj *ret;
int key;
/* For any dynamically allocated kernel object, the object
* pointer is just a member of the conatining struct dyn_obj,
* so just a little arithmetic is necessary to locate the
* corresponding struct rbnode
*/
node = (struct rbnode *)((char *)obj - sizeof(struct rbnode));
key = irq_lock();
if (rb_contains(&obj_rb_tree, node)) {
ret = node_to_dyn_obj(node);
} else {
ret = NULL;
}
irq_unlock(key);
return ret;
}
void *k_object_alloc(enum k_objects otype)
{
struct dyn_obj *dyn_obj;
int key;
/* Stacks are not supported, we don't yet have mem pool APIs
* to request memory that is aligned
*/
__ASSERT(otype > K_OBJ_ANY && otype < K_OBJ_LAST &&
otype != K_OBJ__THREAD_STACK_ELEMENT,
"bad object type requested");
dyn_obj = k_malloc(sizeof(*dyn_obj) + obj_size_get(otype));
if (!dyn_obj) {
SYS_LOG_WRN("could not allocate kernel object");
return NULL;
}
dyn_obj->kobj.name = (char *)&dyn_obj->data;
dyn_obj->kobj.type = otype;
dyn_obj->kobj.flags = 0;
memset(dyn_obj->kobj.perms, 0, CONFIG_MAX_THREAD_BYTES);
/* The allocating thread implicitly gets permission on kernel objects
* that it allocates
*/
_thread_perms_set(&dyn_obj->kobj, _current);
key = irq_lock();
rb_insert(&obj_rb_tree, &dyn_obj->node);
irq_unlock(key);
return dyn_obj->kobj.name;
}
void k_object_free(void *obj)
{
struct dyn_obj *dyn_obj;
int key;
/* This function is intentionally not exposed to user mode.
* There's currently no robust way to track that an object isn't
* being used by some other thread
*/
key = irq_lock();
dyn_obj = dyn_object_find(obj);
if (dyn_obj) {
rb_remove(&obj_rb_tree, &dyn_obj->node);
}
irq_unlock(key);
if (dyn_obj) {
k_free(dyn_obj);
}
}
struct _k_object *_k_object_find(void *obj)
{
struct _k_object *ret;
ret = _k_object_gperf_find(obj);
if (!ret) {
struct dyn_obj *dyn_obj;
dyn_obj = dyn_object_find(obj);
if (dyn_obj) {
ret = &dyn_obj->kobj;
}
}
return ret;
}
static void visit_fn(struct rbnode *node, void *context)
{
struct visit_ctx *vctx = context;
vctx->func(&node_to_dyn_obj(node)->kobj, vctx->original_context);
}
void _k_object_wordlist_foreach(_wordlist_cb_func_t func, void *context)
{
struct visit_ctx vctx;
int key;
_k_object_gperf_wordlist_foreach(func, context);
vctx.func = func;
vctx.original_context = context;
key = irq_lock();
rb_walk(&obj_rb_tree, visit_fn, &vctx);
irq_unlock(key);
}
#endif /* CONFIG_DYNAMIC_OBJECTS */
static int thread_index_get(struct k_thread *t)
{
struct _k_object *ko;
ko = _k_object_find(t);
if (!ko) {
return -1;
}
return ko->data;
}
static void wordlist_cb(struct _k_object *ko, void *ctx_ptr)
{
struct perm_ctx *ctx = (struct perm_ctx *)ctx_ptr;
if (sys_bitfield_test_bit((mem_addr_t)&ko->perms, ctx->parent_id) &&
(struct k_thread *)ko->name != ctx->parent) {
sys_bitfield_set_bit((mem_addr_t)&ko->perms, ctx->child_id);
}
}
void _thread_perms_inherit(struct k_thread *parent, struct k_thread *child)
{
struct perm_ctx ctx = {
thread_index_get(parent),
thread_index_get(child),
parent
};
if ((ctx.parent_id != -1) && (ctx.child_id != -1)) {
_k_object_wordlist_foreach(wordlist_cb, &ctx);
}
}
void _thread_perms_set(struct _k_object *ko, struct k_thread *thread)
{
int index = thread_index_get(thread);
if (index != -1) {
sys_bitfield_set_bit((mem_addr_t)&ko->perms, index);
}
}
void _thread_perms_clear(struct _k_object *ko, struct k_thread *thread)
{
int index = thread_index_get(thread);
if (index != -1) {
sys_bitfield_clear_bit((mem_addr_t)&ko->perms, index);
}
}
static void clear_perms_cb(struct _k_object *ko, void *ctx_ptr)
{
int id = (int)ctx_ptr;
sys_bitfield_clear_bit((mem_addr_t)&ko->perms, id);
}
void _thread_perms_all_clear(struct k_thread *thread)
{
int index = thread_index_get(thread);
if (index != -1) {
_k_object_wordlist_foreach(clear_perms_cb, (void *)index);
}
}
static int thread_perms_test(struct _k_object *ko)
{
int index;
if (ko->flags & K_OBJ_FLAG_PUBLIC) {
return 1;
}
index = thread_index_get(_current);
if (index != -1) {
return sys_bitfield_test_bit((mem_addr_t)&ko->perms, index);
}
return 0;
}
static void dump_permission_error(struct _k_object *ko)
{
int index = thread_index_get(_current);
printk("thread %p (%d) does not have permission on %s %p [",
_current, index,
otype_to_str(ko->type), ko->name);
for (int i = CONFIG_MAX_THREAD_BYTES - 1; i >= 0; i--) {
printk("%02x", ko->perms[i]);
}
printk("]\n");
}
void _dump_object_error(int retval, void *obj, struct _k_object *ko,
enum k_objects otype)
{
switch (retval) {
case -EBADF:
printk("%p is not a valid %s\n", obj, otype_to_str(otype));
break;
case -EPERM:
dump_permission_error(ko);
break;
case -EINVAL:
printk("%p used before initialization\n", obj);
break;
case -EADDRINUSE:
printk("%p %s in use\n", obj, otype_to_str(otype));
}
}
void _impl_k_object_access_grant(void *object, struct k_thread *thread)
{
struct _k_object *ko = _k_object_find(object);
if (ko) {
_thread_perms_set(ko, thread);
}
}
void _impl_k_object_access_revoke(void *object, struct k_thread *thread)
{
struct _k_object *ko = _k_object_find(object);
if (ko) {
_thread_perms_clear(ko, thread);
}
}
void k_object_access_all_grant(void *object)
{
struct _k_object *ko = _k_object_find(object);
if (ko) {
ko->flags |= K_OBJ_FLAG_PUBLIC;
}
}
int _k_object_validate(struct _k_object *ko, enum k_objects otype,
enum _obj_init_check init)
{
if (unlikely(!ko || (otype != K_OBJ_ANY && ko->type != otype))) {
return -EBADF;
}
/* Manipulation of any kernel objects by a user thread requires that
* thread be granted access first, even for uninitialized objects
*/
if (unlikely(!thread_perms_test(ko))) {
return -EPERM;
}
/* Initialization state checks. _OBJ_INIT_ANY, we don't care */
if (likely(init == _OBJ_INIT_TRUE)) {
/* Object MUST be intialized */
if (unlikely(!(ko->flags & K_OBJ_FLAG_INITIALIZED))) {
return -EINVAL;
}
} else if (init < _OBJ_INIT_TRUE) { /* _OBJ_INIT_FALSE case */
/* Object MUST NOT be initialized */
if (unlikely(ko->flags & K_OBJ_FLAG_INITIALIZED)) {
return -EADDRINUSE;
}
}
return 0;
}
void _k_object_init(void *object)
{
struct _k_object *ko;
/* By the time we get here, if the caller was from userspace, all the
* necessary checks have been done in _k_object_validate(), which takes
* place before the object is initialized.
*
* This function runs after the object has been initialized and
* finalizes it
*/
ko = _k_object_find(object);
if (!ko) {
/* Supervisor threads can ignore rules about kernel objects
* and may declare them on stacks, etc. Such objects will never
* be usable from userspace, but we shouldn't explode.
*/
return;
}
/* Allows non-initialization system calls to be made on this object */
ko->flags |= K_OBJ_FLAG_INITIALIZED;
}
void _k_object_uninit(void *object)
{
struct _k_object *ko;
/* See comments in _k_object_init() */
ko = _k_object_find(object);
if (!ko) {
return;
}
ko->flags &= ~K_OBJ_FLAG_INITIALIZED;
}
static u32_t handler_bad_syscall(u32_t bad_id, u32_t arg2, u32_t arg3,
u32_t arg4, u32_t arg5, u32_t arg6, void *ssf)
{
printk("Bad system call id %u invoked\n", bad_id);
_arch_syscall_oops(ssf);
CODE_UNREACHABLE;
}
static u32_t handler_no_syscall(u32_t arg1, u32_t arg2, u32_t arg3,
u32_t arg4, u32_t arg5, u32_t arg6, void *ssf)
{
printk("Unimplemented system call\n");
_arch_syscall_oops(ssf);
CODE_UNREACHABLE;
}
#include <syscall_dispatch.c>