zephyr/drivers/clock_control/nrf_power_clock.c
Krzysztof Chruscinski a36a478954 drivers: clock_control: nrf: Reworked calibration to use k_timer
Reworked calibration to not use HW platform which is not available on
some platforms (nrf53) and does not bring any value compared to using
system timer. Switched to use k_timer. Additionally, improved
calibration algorithm to request also LF clock before starting
calibration. This simplifies the algorithm because it does not need
to support disabling low frequency clock which in calibration.

Tests has been updated and simplified. Former tests relied on HW timer
event.

Signed-off-by: Krzysztof Chruscinski <krzysztof.chruscinski@nordicsemi.no>
2020-03-19 15:15:23 +01:00

458 lines
11 KiB
C

/*
* Copyright (c) 2016-2019 Nordic Semiconductor ASA
* Copyright (c) 2016 Vinayak Kariappa Chettimada
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <soc.h>
#include <drivers/clock_control.h>
#include <drivers/clock_control/nrf_clock_control.h>
#include "nrf_clock_calibration.h"
#include <logging/log.h>
#include <hal/nrf_power.h>
LOG_MODULE_REGISTER(clock_control, CONFIG_CLOCK_CONTROL_LOG_LEVEL);
/* Helper logging macros which prepends subsys name to the log. */
#ifdef CONFIG_LOG
#define CLOCK_LOG(lvl, dev, subsys, ...) \
LOG_##lvl("%s: " GET_ARG1(__VA_ARGS__), \
get_sub_config(dev, (enum clock_control_nrf_type)subsys)->name \
COND_CODE_0(NUM_VA_ARGS_LESS_1(__VA_ARGS__),\
(), (, GET_ARGS_LESS_1(__VA_ARGS__))))
#else
#define CLOCK_LOG(...)
#endif
#define ERR(dev, subsys, ...) CLOCK_LOG(ERR, dev, subsys, __VA_ARGS__)
#define WRN(dev, subsys, ...) CLOCK_LOG(WRN, dev, subsys, __VA_ARGS__)
#define INF(dev, subsys, ...) CLOCK_LOG(INF, dev, subsys, __VA_ARGS__)
#define DBG(dev, subsys, ...) CLOCK_LOG(DBG, dev, subsys, __VA_ARGS__)
/* Clock subsys structure */
struct nrf_clock_control_sub_data {
sys_slist_t list; /* List of users requesting callback */
u8_t ref; /* Users counter */
bool started; /* Indicated that clock is started */
};
/* Clock subsys static configuration */
struct nrf_clock_control_sub_config {
nrf_clock_event_t started_evt; /* Clock started event */
nrf_clock_task_t start_tsk; /* Clock start task */
nrf_clock_task_t stop_tsk; /* Clock stop task */
#ifdef CONFIG_LOG
const char *name;
#endif
};
struct nrf_clock_control_data {
struct nrf_clock_control_sub_data subsys[CLOCK_CONTROL_NRF_TYPE_COUNT];
};
struct nrf_clock_control_config {
struct nrf_clock_control_sub_config
subsys[CLOCK_CONTROL_NRF_TYPE_COUNT];
};
static void clkstarted_handle(struct device *dev,
enum clock_control_nrf_type type);
/* Return true if given event has enabled interrupt and is triggered. Event
* is cleared.
*/
static bool clock_event_check_and_clean(nrf_clock_event_t evt, u32_t intmask)
{
bool ret = nrf_clock_event_check(NRF_CLOCK, evt) &&
nrf_clock_int_enable_check(NRF_CLOCK, intmask);
if (ret) {
nrf_clock_event_clear(NRF_CLOCK, evt);
}
return ret;
}
static void clock_irqs_disable(void)
{
nrf_clock_int_disable(NRF_CLOCK,
(NRF_CLOCK_INT_HF_STARTED_MASK |
NRF_CLOCK_INT_LF_STARTED_MASK |
COND_CODE_1(CONFIG_USB_NRFX,
(NRF_POWER_INT_USBDETECTED_MASK |
NRF_POWER_INT_USBREMOVED_MASK |
NRF_POWER_INT_USBPWRRDY_MASK),
(0))));
}
static void clock_irqs_enable(void)
{
nrf_clock_int_enable(NRF_CLOCK,
(NRF_CLOCK_INT_HF_STARTED_MASK |
NRF_CLOCK_INT_LF_STARTED_MASK |
COND_CODE_1(CONFIG_USB_NRFX,
(NRF_POWER_INT_USBDETECTED_MASK |
NRF_POWER_INT_USBREMOVED_MASK |
NRF_POWER_INT_USBPWRRDY_MASK),
(0))));
}
static struct nrf_clock_control_sub_data *get_sub_data(struct device *dev,
enum clock_control_nrf_type type)
{
struct nrf_clock_control_data *data = dev->driver_data;
return &data->subsys[type];
}
static const struct nrf_clock_control_sub_config *get_sub_config(
struct device *dev,
enum clock_control_nrf_type type)
{
const struct nrf_clock_control_config *config =
dev->config->config_info;
return &config->subsys[type];
}
static enum clock_control_status get_status(struct device *dev,
clock_control_subsys_t subsys)
{
enum clock_control_nrf_type type = (enum clock_control_nrf_type)subsys;
struct nrf_clock_control_sub_data *data;
__ASSERT_NO_MSG(type < CLOCK_CONTROL_NRF_TYPE_COUNT);
data = get_sub_data(dev, type);
if (data->started) {
return CLOCK_CONTROL_STATUS_ON;
}
if (data->ref > 0) {
return CLOCK_CONTROL_STATUS_STARTING;
}
return CLOCK_CONTROL_STATUS_OFF;
}
static int clock_stop(struct device *dev, clock_control_subsys_t subsys)
{
enum clock_control_nrf_type type = (enum clock_control_nrf_type)subsys;
const struct nrf_clock_control_sub_config *config;
struct nrf_clock_control_sub_data *data;
int err = 0;
int key;
__ASSERT_NO_MSG(type < CLOCK_CONTROL_NRF_TYPE_COUNT);
config = get_sub_config(dev, type);
data = get_sub_data(dev, type);
key = irq_lock();
if (data->ref == 0) {
err = -EALREADY;
goto out;
}
data->ref--;
if (data->ref == 0) {
DBG(dev, subsys, "Stopping");
sys_slist_init(&data->list);
if (IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_K32SRC_RC_CALIBRATION)
&& (subsys == CLOCK_CONTROL_NRF_SUBSYS_LF)) {
z_nrf_clock_calibration_lfclk_stopped();
}
nrf_clock_task_trigger(NRF_CLOCK, config->stop_tsk);
data->started = false;
}
out:
irq_unlock(key);
return err;
}
static bool is_in_list(sys_slist_t *list, sys_snode_t *node)
{
sys_snode_t *item = sys_slist_peek_head(list);
do {
if (item == node) {
return true;
}
item = sys_slist_peek_next(item);
} while (item);
return false;
}
static void list_append(sys_slist_t *list, sys_snode_t *node)
{
int key;
key = irq_lock();
sys_slist_append(list, node);
irq_unlock(key);
}
static struct clock_control_async_data *list_get(sys_slist_t *list)
{
struct clock_control_async_data *async_data;
sys_snode_t *node;
int key;
key = irq_lock();
node = sys_slist_get(list);
irq_unlock(key);
async_data = CONTAINER_OF(node,
struct clock_control_async_data, node);
return async_data;
}
static inline void anomaly_132_workaround(void)
{
#if (CONFIG_NRF52_ANOMALY_132_DELAY_US - 0)
static bool once;
if (!once) {
k_busy_wait(CONFIG_NRF52_ANOMALY_132_DELAY_US);
once = true;
}
#endif
}
static int clock_async_start(struct device *dev,
clock_control_subsys_t subsys,
struct clock_control_async_data *data)
{
enum clock_control_nrf_type type = (enum clock_control_nrf_type)subsys;
const struct nrf_clock_control_sub_config *config;
struct nrf_clock_control_sub_data *clk_data;
int key;
u8_t ref;
__ASSERT_NO_MSG(type < CLOCK_CONTROL_NRF_TYPE_COUNT);
config = get_sub_config(dev, type);
clk_data = get_sub_data(dev, type);
__ASSERT_NO_MSG((data == NULL) ||
((data != NULL) && (data->cb != NULL)));
/* if node is in the list it means that it is scheduled for
* the second time.
*/
if ((data != NULL)
&& is_in_list(&clk_data->list, &data->node)) {
return -EBUSY;
}
key = irq_lock();
ref = ++clk_data->ref;
__ASSERT_NO_MSG(clk_data->ref > 0);
irq_unlock(key);
if (data) {
bool already_started;
clock_irqs_disable();
already_started = clk_data->started;
if (!already_started) {
list_append(&clk_data->list, &data->node);
}
clock_irqs_enable();
if (already_started) {
data->cb(dev, subsys, data->user_data);
}
}
if (ref == 1) {
DBG(dev, subsys, "Triggering start task");
if (IS_ENABLED(CONFIG_NRF52_ANOMALY_132_WORKAROUND) &&
(subsys == CLOCK_CONTROL_NRF_SUBSYS_LF)) {
anomaly_132_workaround();
}
nrf_clock_task_trigger(NRF_CLOCK, config->start_tsk);
}
return 0;
}
static int clock_start(struct device *dev, clock_control_subsys_t sub_system)
{
return clock_async_start(dev, sub_system, NULL);
}
/* Note: this function has public linkage, and MUST have this
* particular name. The platform architecture itself doesn't care,
* but there is a test (tests/kernel/arm_irq_vector_table) that needs
* to find it to it can set it in a custom vector table. Should
* probably better abstract that at some point (e.g. query and reset
* it by pointer at runtime, maybe?) so we don't have this leaky
* symbol.
*/
void nrf_power_clock_isr(void *arg);
static int clk_init(struct device *dev)
{
IRQ_CONNECT(DT_INST_0_NORDIC_NRF_CLOCK_IRQ_0,
DT_INST_0_NORDIC_NRF_CLOCK_IRQ_0_PRIORITY,
nrf_power_clock_isr, 0, 0);
irq_enable(DT_INST_0_NORDIC_NRF_CLOCK_IRQ_0);
nrf_clock_lf_src_set(NRF_CLOCK, CLOCK_CONTROL_NRF_K32SRC);
if (IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_K32SRC_RC_CALIBRATION)) {
z_nrf_clock_calibration_init(dev);
}
clock_irqs_enable();
for (enum clock_control_nrf_type i = 0;
i < CLOCK_CONTROL_NRF_TYPE_COUNT; i++) {
sys_slist_init(&(get_sub_data(dev, i)->list));
}
return 0;
}
static const struct clock_control_driver_api clock_control_api = {
.on = clock_start,
.off = clock_stop,
.async_on = clock_async_start,
.get_status = get_status,
};
static struct nrf_clock_control_data data;
static const struct nrf_clock_control_config config = {
.subsys = {
[CLOCK_CONTROL_NRF_TYPE_HFCLK] = {
.start_tsk = NRF_CLOCK_TASK_HFCLKSTART,
.started_evt = NRF_CLOCK_EVENT_HFCLKSTARTED,
.stop_tsk = NRF_CLOCK_TASK_HFCLKSTOP,
IF_ENABLED(CONFIG_LOG, (.name = "hfclk",))
},
[CLOCK_CONTROL_NRF_TYPE_LFCLK] = {
.start_tsk = NRF_CLOCK_TASK_LFCLKSTART,
.started_evt = NRF_CLOCK_EVENT_LFCLKSTARTED,
.stop_tsk = NRF_CLOCK_TASK_LFCLKSTOP,
IF_ENABLED(CONFIG_LOG, (.name = "lfclk",))
}
}
};
DEVICE_AND_API_INIT(clock_nrf,
DT_INST_0_NORDIC_NRF_CLOCK_LABEL,
clk_init, &data, &config, PRE_KERNEL_1,
CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&clock_control_api);
static void clkstarted_handle(struct device *dev,
enum clock_control_nrf_type type)
{
struct nrf_clock_control_sub_data *sub_data = get_sub_data(dev, type);
struct clock_control_async_data *async_data;
DBG(dev, type, "Clock started");
sub_data->started = true;
while ((async_data = list_get(&sub_data->list)) != NULL) {
async_data->cb(dev, (clock_control_subsys_t)type,
async_data->user_data);
}
}
#if defined(CONFIG_USB_NRFX)
static bool power_event_check_and_clean(nrf_power_event_t evt, u32_t intmask)
{
bool ret = nrf_power_event_check(NRF_POWER, evt) &&
nrf_power_int_enable_check(NRF_POWER, intmask);
if (ret) {
nrf_power_event_clear(NRF_POWER, evt);
}
return ret;
}
#endif
static void usb_power_isr(void)
{
#if defined(CONFIG_USB_NRFX)
extern void usb_dc_nrfx_power_event_callback(nrf_power_event_t event);
if (power_event_check_and_clean(NRF_POWER_EVENT_USBDETECTED,
NRF_POWER_INT_USBDETECTED_MASK)) {
usb_dc_nrfx_power_event_callback(NRF_POWER_EVENT_USBDETECTED);
}
if (power_event_check_and_clean(NRF_POWER_EVENT_USBPWRRDY,
NRF_POWER_INT_USBPWRRDY_MASK)) {
usb_dc_nrfx_power_event_callback(NRF_POWER_EVENT_USBPWRRDY);
}
if (power_event_check_and_clean(NRF_POWER_EVENT_USBREMOVED,
NRF_POWER_INT_USBREMOVED_MASK)) {
usb_dc_nrfx_power_event_callback(NRF_POWER_EVENT_USBREMOVED);
}
#endif
}
void nrf_power_clock_isr(void *arg)
{
ARG_UNUSED(arg);
struct device *dev = DEVICE_GET(clock_nrf);
if (clock_event_check_and_clean(NRF_CLOCK_EVENT_HFCLKSTARTED,
NRF_CLOCK_INT_HF_STARTED_MASK)) {
struct nrf_clock_control_sub_data *data =
get_sub_data(dev, CLOCK_CONTROL_NRF_TYPE_HFCLK);
/* Check needed due to anomaly 201:
* HFCLKSTARTED may be generated twice.
*/
if (!data->started) {
clkstarted_handle(dev, CLOCK_CONTROL_NRF_TYPE_HFCLK);
}
}
if (clock_event_check_and_clean(NRF_CLOCK_EVENT_LFCLKSTARTED,
NRF_CLOCK_INT_LF_STARTED_MASK)) {
if (IS_ENABLED(
CONFIG_CLOCK_CONTROL_NRF_K32SRC_RC_CALIBRATION)) {
z_nrf_clock_calibration_lfclk_started();
}
clkstarted_handle(dev, CLOCK_CONTROL_NRF_TYPE_LFCLK);
}
usb_power_isr();
if (IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_K32SRC_RC_CALIBRATION)) {
z_nrf_clock_calibration_isr();
}
}
#ifdef CONFIG_USB_NRFX
void nrf5_power_usb_power_int_enable(bool enable)
{
u32_t mask;
mask = NRF_POWER_INT_USBDETECTED_MASK |
NRF_POWER_INT_USBREMOVED_MASK |
NRF_POWER_INT_USBPWRRDY_MASK;
if (enable) {
nrf_power_int_enable(NRF_POWER, mask);
irq_enable(DT_INST_0_NORDIC_NRF_CLOCK_IRQ_0);
} else {
nrf_power_int_disable(NRF_POWER, mask);
}
}
#endif