zephyr/subsys/net/ip/tcp.c
Johan Hedberg 2975ca0754 Bluetooth: Kconfig: Rename CONFIG_BLUETOOTH_* to CONFIG_BT_*
The API name space for Bluetooth is bt_* and BT_* so it makes sense to
align the Kconfig name space with this. The additional benefit is that
this also makes the names shorter. It is also in line with what Linux
uses for Bluetooth Kconfig entries.

Some Bluetooth-related Networking Kconfig defines are renamed as well
in order to be consistent, such as NET_L2_BLUETOOTH.

Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
2017-08-09 11:14:19 +03:00

1189 lines
29 KiB
C

/** @file
* @brief TCP handler
*
* Handle TCP connections.
*/
/*
* Copyright (c) 2016 Intel Corporation
* Copyright 2011-2015 by Andrey Butok. FNET Community.
* Copyright 2008-2010 by Andrey Butok. Freescale Semiconductor, Inc.
* Copyright 2003 by Alexey Shervashidze, Andrey Butok. Motorola SPS.
*
* SPDX-License-Identifier: Apache-2.0
*/
#if defined(CONFIG_NET_DEBUG_TCP)
#define SYS_LOG_DOMAIN "net/tcp"
#define NET_LOG_ENABLED 1
#endif
#include <kernel.h>
#include <string.h>
#include <errno.h>
#include <stdbool.h>
#include <net/net_pkt.h>
#include <net/net_ip.h>
#include <net/net_context.h>
#include <misc/byteorder.h>
#include "connection.h"
#include "net_private.h"
#include "ipv6.h"
#include "ipv4.h"
#include "tcp.h"
#include "net_stats.h"
#define ALLOC_TIMEOUT 500
/*
* Each TCP connection needs to be tracked by net_context, so
* we need to allocate equal number of control structures here.
*/
#define NET_MAX_TCP_CONTEXT CONFIG_NET_MAX_CONTEXTS
static struct net_tcp tcp_context[NET_MAX_TCP_CONTEXT];
#define INIT_RETRY_MS 200
/* 2MSL timeout, where "MSL" is arbitrarily 2 minutes in the RFC */
#if defined(CONFIG_NET_TCP_2MSL_TIME)
#define TIME_WAIT_MS K_SECONDS(CONFIG_NET_TCP_2MSL_TIME)
#else
#define TIME_WAIT_MS K_SECONDS(2 * 2 * 60)
#endif
struct tcp_segment {
u32_t seq;
u32_t ack;
u16_t wnd;
u8_t flags;
u8_t optlen;
void *options;
struct sockaddr_ptr *src_addr;
const struct sockaddr *dst_addr;
};
#if defined(CONFIG_NET_DEBUG_TCP) && (CONFIG_SYS_LOG_NET_LEVEL > 2)
static char upper_if_set(char chr, bool set)
{
if (set) {
return chr & ~0x20;
}
return chr | 0x20;
}
static void net_tcp_trace(struct net_pkt *pkt, struct net_tcp *tcp)
{
struct net_tcp_hdr hdr, *tcp_hdr;
u32_t rel_ack, ack;
u8_t flags;
tcp_hdr = net_tcp_get_hdr(pkt, &hdr);
if (!tcp_hdr) {
return;
}
flags = NET_TCP_FLAGS(tcp_hdr);
ack = sys_get_be32(tcp_hdr->ack);
if (!tcp->sent_ack) {
rel_ack = 0;
} else {
rel_ack = ack ? ack - tcp->sent_ack : 0;
}
NET_DBG("pkt %p src %u dst %u seq 0x%04x (%u) ack 0x%04x (%u/%u) "
"flags %c%c%c%c%c%c win %u chk 0x%04x",
pkt,
ntohs(tcp_hdr->src_port),
ntohs(tcp_hdr->dst_port),
sys_get_be32(tcp_hdr->seq),
sys_get_be32(tcp_hdr->seq),
ack,
ack,
/* This tells how many bytes we are acking now */
rel_ack,
upper_if_set('u', flags & NET_TCP_URG),
upper_if_set('a', flags & NET_TCP_ACK),
upper_if_set('p', flags & NET_TCP_PSH),
upper_if_set('r', flags & NET_TCP_RST),
upper_if_set('s', flags & NET_TCP_SYN),
upper_if_set('f', flags & NET_TCP_FIN),
sys_get_be16(tcp_hdr->wnd),
ntohs(tcp_hdr->chksum));
}
#else
#define net_tcp_trace(...)
#endif /* CONFIG_NET_DEBUG_TCP */
static inline u32_t retry_timeout(const struct net_tcp *tcp)
{
return ((u32_t)1 << tcp->retry_timeout_shift) * INIT_RETRY_MS;
}
#define is_6lo_technology(pkt) \
(IS_ENABLED(CONFIG_NET_IPV6) && net_pkt_family(pkt) == AF_INET6 && \
((IS_ENABLED(CONFIG_NET_L2_BT) && \
net_pkt_ll_dst(pkt)->type == NET_LINK_BLUETOOTH) || \
(IS_ENABLED(CONFIG_NET_L2_IEEE802154) && \
net_pkt_ll_dst(pkt)->type == NET_LINK_IEEE802154)))
static inline void do_ref_if_needed(struct net_pkt *pkt)
{
/* The ref should not be done for Bluetooth and IEEE 802.15.4 which use
* IPv6 header compression (6lo). For BT and 802.15.4 we copy the pkt
* chain we are about to send so it is fine if the network driver
* releases it. As we have our own copy of the sent data, we do not
* need to take a reference of it. See also net_tcp_send_pkt().
*/
if (!is_6lo_technology(pkt)) {
pkt = net_pkt_ref(pkt);
}
}
static void abort_connection(struct net_tcp *tcp)
{
struct net_context *ctx = tcp->context;
NET_DBG("Segment retransmission exceeds %d, resetting context %p",
CONFIG_NET_TCP_RETRY_COUNT, ctx);
if (ctx->recv_cb) {
ctx->recv_cb(ctx, NULL, -ECONNRESET, tcp->recv_user_data);
}
net_context_unref(ctx);
}
static void tcp_retry_expired(struct k_timer *timer)
{
struct net_tcp *tcp = CONTAINER_OF(timer, struct net_tcp, retry_timer);
struct net_pkt *pkt;
/* Double the retry period for exponential backoff and resent
* the first (only the first!) unack'd packet.
*/
if (!sys_slist_is_empty(&tcp->sent_list)) {
tcp->retry_timeout_shift++;
if (tcp->retry_timeout_shift > CONFIG_NET_TCP_RETRY_COUNT) {
abort_connection(tcp);
return;
}
k_timer_start(&tcp->retry_timer, retry_timeout(tcp), 0);
pkt = CONTAINER_OF(sys_slist_peek_head(&tcp->sent_list),
struct net_pkt, sent_list);
do_ref_if_needed(pkt);
if (net_tcp_send_pkt(pkt) < 0 && !is_6lo_technology(pkt)) {
net_pkt_unref(pkt);
} else {
if (IS_ENABLED(CONFIG_NET_STATISTICS_TCP) &&
!is_6lo_technology(pkt)) {
net_stats_update_tcp_seg_rexmit();
}
}
} else if (IS_ENABLED(CONFIG_NET_TCP_TIME_WAIT)) {
if (tcp->fin_sent && tcp->fin_rcvd) {
net_context_unref(tcp->context);
}
}
}
struct net_tcp *net_tcp_alloc(struct net_context *context)
{
int i, key;
key = irq_lock();
for (i = 0; i < NET_MAX_TCP_CONTEXT; i++) {
if (!net_tcp_is_used(&tcp_context[i])) {
tcp_context[i].flags |= NET_TCP_IN_USE;
break;
}
}
irq_unlock(key);
if (i >= NET_MAX_TCP_CONTEXT) {
return NULL;
}
memset(&tcp_context[i], 0, sizeof(struct net_tcp));
tcp_context[i].flags = NET_TCP_IN_USE;
tcp_context[i].state = NET_TCP_CLOSED;
tcp_context[i].context = context;
tcp_context[i].send_seq = tcp_init_isn();
tcp_context[i].recv_max_ack = tcp_context[i].send_seq + 1u;
tcp_context[i].recv_wnd = min(NET_TCP_MAX_WIN, NET_TCP_BUF_MAX_LEN);
tcp_context[i].accept_cb = NULL;
k_timer_init(&tcp_context[i].retry_timer, tcp_retry_expired, NULL);
k_sem_init(&tcp_context[i].connect_wait, 0, UINT_MAX);
return &tcp_context[i];
}
static void ack_timer_cancel(struct net_tcp *tcp)
{
tcp->ack_timer_cancelled = true;
k_delayed_work_cancel(&tcp->ack_timer);
}
static void fin_timer_cancel(struct net_tcp *tcp)
{
tcp->fin_timer_cancelled = true;
k_delayed_work_cancel(&tcp->fin_timer);
}
int net_tcp_release(struct net_tcp *tcp)
{
struct net_pkt *pkt;
struct net_pkt *tmp;
int key;
if (!PART_OF_ARRAY(tcp_context, tcp)) {
return -EINVAL;
}
SYS_SLIST_FOR_EACH_CONTAINER_SAFE(&tcp->sent_list, pkt, tmp,
sent_list) {
sys_slist_remove(&tcp->sent_list, NULL, &pkt->sent_list);
net_pkt_unref(pkt);
}
k_timer_stop(&tcp->retry_timer);
k_sem_reset(&tcp->connect_wait);
ack_timer_cancel(tcp);
fin_timer_cancel(tcp);
net_tcp_change_state(tcp, NET_TCP_CLOSED);
tcp->context = NULL;
key = irq_lock();
tcp->flags &= ~(NET_TCP_IN_USE | NET_TCP_RECV_MSS_SET);
irq_unlock(key);
NET_DBG("Disposed of TCP connection state");
return 0;
}
static inline u8_t net_tcp_add_options(struct net_buf *header, size_t len,
void *data)
{
u8_t optlen;
memcpy(net_buf_add(header, len), data, len);
/* Set the length (this value is saved in 4-byte words format) */
if ((len & 0x3u) != 0u) {
optlen = (len & 0xfffCu) + 4u;
} else {
optlen = len;
}
return optlen;
}
static int finalize_segment(struct net_context *context, struct net_pkt *pkt)
{
#if defined(CONFIG_NET_IPV4)
if (net_pkt_family(pkt) == AF_INET) {
return net_ipv4_finalize(context, pkt);
} else
#endif
#if defined(CONFIG_NET_IPV6)
if (net_pkt_family(pkt) == AF_INET6) {
return net_ipv6_finalize(context, pkt);
}
#endif
{
}
return 0;
}
static struct net_pkt *prepare_segment(struct net_tcp *tcp,
struct tcp_segment *segment,
struct net_pkt *pkt)
{
struct net_buf *header, *tail = NULL;
struct net_context *context = tcp->context;
struct net_tcp_hdr *tcp_hdr;
u16_t dst_port, src_port;
u8_t optlen = 0;
NET_ASSERT(context);
if (pkt) {
/* TCP transmit data comes in with a pre-allocated
* net_pkt at the head (so that net_context_send can find
* the context), and the data after. Rejigger so we
* can insert a TCP header cleanly
*/
tail = pkt->frags;
pkt->frags = NULL;
} else {
pkt = net_pkt_get_tx(context, ALLOC_TIMEOUT);
if (!pkt) {
return NULL;
}
}
#if defined(CONFIG_NET_IPV4)
if (net_pkt_family(pkt) == AF_INET) {
net_ipv4_create(context, pkt,
net_sin_ptr(segment->src_addr)->sin_addr,
&(net_sin(segment->dst_addr)->sin_addr));
dst_port = net_sin(segment->dst_addr)->sin_port;
src_port = ((struct sockaddr_in_ptr *)&context->local)->
sin_port;
NET_IPV4_HDR(pkt)->proto = IPPROTO_TCP;
} else
#endif
#if defined(CONFIG_NET_IPV6)
if (net_pkt_family(pkt) == AF_INET6) {
net_ipv6_create(tcp->context, pkt,
net_sin6_ptr(segment->src_addr)->sin6_addr,
&(net_sin6(segment->dst_addr)->sin6_addr));
dst_port = net_sin6(segment->dst_addr)->sin6_port;
src_port = ((struct sockaddr_in6_ptr *)&context->local)->
sin6_port;
NET_IPV6_HDR(pkt)->nexthdr = IPPROTO_TCP;
} else
#endif
{
NET_DBG("Protocol family %d not supported",
net_pkt_family(pkt));
net_pkt_unref(pkt);
return NULL;
}
header = net_pkt_get_data(context, ALLOC_TIMEOUT);
if (!header) {
net_pkt_unref(pkt);
return NULL;
}
net_pkt_frag_add(pkt, header);
tcp_hdr = (struct net_tcp_hdr *)net_buf_add(header, NET_TCPH_LEN);
if (segment->options && segment->optlen) {
optlen = net_tcp_add_options(header, segment->optlen,
segment->options);
}
tcp_hdr->offset = (NET_TCPH_LEN + optlen) << 2;
tcp_hdr->src_port = src_port;
tcp_hdr->dst_port = dst_port;
sys_put_be32(segment->seq, tcp_hdr->seq);
sys_put_be32(segment->ack, tcp_hdr->ack);
tcp_hdr->flags = segment->flags;
sys_put_be16(segment->wnd, tcp_hdr->wnd);
tcp_hdr->urg[0] = 0;
tcp_hdr->urg[1] = 0;
if (tail) {
net_pkt_frag_add(pkt, tail);
}
if (finalize_segment(context, pkt) < 0) {
net_pkt_unref(pkt);
return NULL;
}
net_tcp_trace(pkt, tcp);
return pkt;
}
u32_t net_tcp_get_recv_wnd(const struct net_tcp *tcp)
{
return tcp->recv_wnd;
}
int net_tcp_prepare_segment(struct net_tcp *tcp, u8_t flags,
void *options, size_t optlen,
const struct sockaddr_ptr *local,
const struct sockaddr *remote,
struct net_pkt **send_pkt)
{
u32_t seq;
u16_t wnd;
struct tcp_segment segment = { 0 };
if (!local) {
local = &tcp->context->local;
}
seq = tcp->send_seq;
if (flags & NET_TCP_ACK) {
if (net_tcp_get_state(tcp) == NET_TCP_FIN_WAIT_1) {
if (flags & NET_TCP_FIN) {
/* FIN is used here only to determine which
* state to go to next; it's not to be used
* in the sent segment.
*/
flags &= ~NET_TCP_FIN;
net_tcp_change_state(tcp, NET_TCP_TIME_WAIT);
} else {
net_tcp_change_state(tcp, NET_TCP_CLOSING);
}
} else if (net_tcp_get_state(tcp) == NET_TCP_FIN_WAIT_2) {
net_tcp_change_state(tcp, NET_TCP_TIME_WAIT);
} else if (net_tcp_get_state(tcp) == NET_TCP_CLOSE_WAIT) {
tcp->flags |= NET_TCP_IS_SHUTDOWN;
flags |= NET_TCP_FIN;
net_tcp_change_state(tcp, NET_TCP_LAST_ACK);
}
}
if (flags & NET_TCP_FIN) {
tcp->flags |= NET_TCP_FINAL_SENT;
/* RFC793 says about ACK bit: "Once a connection is
* established this is always sent." as teardown
* happens when connection is established, it must
* have ACK set.
*/
flags |= NET_TCP_ACK;
/* FIXME: We apparently miss increment in another
* transition of the state machine, so have to
* adjust seq no by 2 here. This is required for
* Linux to detect active close on server side, and
* to make Wireshark happy about sequence numbers.
*/
seq += 2;
if (net_tcp_get_state(tcp) == NET_TCP_ESTABLISHED ||
net_tcp_get_state(tcp) == NET_TCP_SYN_RCVD) {
net_tcp_change_state(tcp, NET_TCP_FIN_WAIT_1);
}
}
if (flags & NET_TCP_SYN) {
seq++;
}
wnd = net_tcp_get_recv_wnd(tcp);
segment.src_addr = (struct sockaddr_ptr *)local;
segment.dst_addr = remote;
segment.seq = tcp->send_seq;
segment.ack = tcp->send_ack;
segment.flags = flags;
segment.wnd = wnd;
segment.options = options;
segment.optlen = optlen;
*send_pkt = prepare_segment(tcp, &segment, *send_pkt);
if (!*send_pkt) {
return -EINVAL;
}
tcp->send_seq = seq;
if (net_tcp_seq_greater(tcp->send_seq, tcp->recv_max_ack)) {
tcp->recv_max_ack = tcp->send_seq;
}
return 0;
}
static inline u32_t get_size(u32_t pos1, u32_t pos2)
{
u32_t size;
if (pos1 <= pos2) {
size = pos2 - pos1;
} else {
size = NET_TCP_MAX_SEQ - pos1 + pos2 + 1;
}
return size;
}
#if defined(CONFIG_NET_IPV4)
#ifndef NET_IP_MAX_PACKET
#define NET_IP_MAX_PACKET (10 * 1024)
#endif
#define NET_IP_MAX_OPTIONS 40 /* Maximum option field length */
static inline size_t ip_max_packet_len(struct in_addr *dest_ip)
{
ARG_UNUSED(dest_ip);
return (NET_IP_MAX_PACKET - (NET_IP_MAX_OPTIONS +
sizeof(struct net_ipv4_hdr))) & (~0x3LU);
}
#else /* CONFIG_NET_IPV4 */
#define ip_max_packet_len(...) 0
#endif /* CONFIG_NET_IPV4 */
u16_t net_tcp_get_recv_mss(const struct net_tcp *tcp)
{
sa_family_t family = net_context_get_family(tcp->context);
if (family == AF_INET) {
#if defined(CONFIG_NET_IPV4)
struct net_if *iface = net_context_get_iface(tcp->context);
if (iface && iface->mtu >= NET_IPV4TCPH_LEN) {
/* Detect MSS based on interface MTU minus "TCP,IP
* header size"
*/
return iface->mtu - NET_IPV4TCPH_LEN;
}
#else
return 0;
#endif /* CONFIG_NET_IPV4 */
}
#if defined(CONFIG_NET_IPV6)
else if (family == AF_INET6) {
return 1280;
}
#endif /* CONFIG_NET_IPV6 */
return 0;
}
static void net_tcp_set_syn_opt(struct net_tcp *tcp, u8_t *options,
u8_t *optionlen)
{
u16_t recv_mss;
*optionlen = 0;
if (!(tcp->flags & NET_TCP_RECV_MSS_SET)) {
recv_mss = net_tcp_get_recv_mss(tcp);
tcp->flags |= NET_TCP_RECV_MSS_SET;
} else {
recv_mss = 0;
}
UNALIGNED_PUT(htonl((u32_t)recv_mss | NET_TCP_MSS_HEADER),
(u32_t *)(options + *optionlen));
*optionlen += NET_TCP_MSS_SIZE;
}
int net_tcp_prepare_ack(struct net_tcp *tcp, const struct sockaddr *remote,
struct net_pkt **pkt)
{
u8_t options[NET_TCP_MAX_OPT_SIZE];
u8_t optionlen;
switch (net_tcp_get_state(tcp)) {
case NET_TCP_SYN_RCVD:
/* In the SYN_RCVD state acknowledgment must be with the
* SYN flag.
*/
tcp->send_seq--;
net_tcp_set_syn_opt(tcp, options, &optionlen);
return net_tcp_prepare_segment(tcp, NET_TCP_SYN | NET_TCP_ACK,
options, optionlen, NULL, remote,
pkt);
case NET_TCP_FIN_WAIT_1:
case NET_TCP_LAST_ACK:
/* In the FIN_WAIT_1 and LAST_ACK states acknowledgment must
* be with the FIN flag.
*/
tcp->send_seq--;
return net_tcp_prepare_segment(tcp, NET_TCP_FIN | NET_TCP_ACK,
0, 0, NULL, remote, pkt);
default:
return net_tcp_prepare_segment(tcp, NET_TCP_ACK, 0, 0, NULL,
remote, pkt);
}
return -EINVAL;
}
int net_tcp_prepare_reset(struct net_tcp *tcp,
const struct sockaddr *remote,
struct net_pkt **pkt)
{
struct tcp_segment segment = { 0 };
if ((net_context_get_state(tcp->context) != NET_CONTEXT_UNCONNECTED) &&
(net_tcp_get_state(tcp) != NET_TCP_SYN_SENT) &&
(net_tcp_get_state(tcp) != NET_TCP_TIME_WAIT)) {
/* Send the reset segment always with acknowledgment. */
segment.ack = tcp->send_ack;
segment.flags = NET_TCP_RST | NET_TCP_ACK;
segment.seq = tcp->send_seq;
segment.src_addr = &tcp->context->local;
segment.dst_addr = remote;
segment.wnd = 0;
segment.options = NULL;
segment.optlen = 0;
*pkt = prepare_segment(tcp, &segment, NULL);
}
return 0;
}
const char * const net_tcp_state_str(enum net_tcp_state state)
{
#if defined(CONFIG_NET_DEBUG_TCP)
switch (state) {
case NET_TCP_CLOSED:
return "CLOSED";
case NET_TCP_LISTEN:
return "LISTEN";
case NET_TCP_SYN_SENT:
return "SYN_SENT";
case NET_TCP_SYN_RCVD:
return "SYN_RCVD";
case NET_TCP_ESTABLISHED:
return "ESTABLISHED";
case NET_TCP_CLOSE_WAIT:
return "CLOSE_WAIT";
case NET_TCP_LAST_ACK:
return "LAST_ACK";
case NET_TCP_FIN_WAIT_1:
return "FIN_WAIT_1";
case NET_TCP_FIN_WAIT_2:
return "FIN_WAIT_2";
case NET_TCP_TIME_WAIT:
return "TIME_WAIT";
case NET_TCP_CLOSING:
return "CLOSING";
}
#else /* CONFIG_NET_DEBUG_TCP */
ARG_UNUSED(state);
#endif /* CONFIG_NET_DEBUG_TCP */
return "";
}
int net_tcp_queue_data(struct net_context *context, struct net_pkt *pkt)
{
struct net_conn *conn = (struct net_conn *)context->conn_handler;
size_t data_len = net_pkt_get_len(pkt);
int ret;
/* Set PSH on all packets, our window is so small that there's
* no point in the remote side trying to finesse things and
* coalesce packets.
*/
ret = net_tcp_prepare_segment(context->tcp, NET_TCP_PSH | NET_TCP_ACK,
NULL, 0, NULL, &conn->remote_addr, &pkt);
if (ret) {
return ret;
}
context->tcp->send_seq += data_len;
net_stats_update_tcp_sent(data_len);
sys_slist_append(&context->tcp->sent_list, &pkt->sent_list);
/* We need to restart retry_timer if it is stopped. */
if (k_timer_remaining_get(&context->tcp->retry_timer) == 0) {
k_timer_start(&context->tcp->retry_timer,
retry_timeout(context->tcp), 0);
}
do_ref_if_needed(pkt);
return 0;
}
int net_tcp_send_pkt(struct net_pkt *pkt)
{
struct net_context *ctx = net_pkt_context(pkt);
struct net_tcp_hdr hdr, *tcp_hdr;
bool calc_chksum = false;
tcp_hdr = net_tcp_get_hdr(pkt, &hdr);
if (!tcp_hdr) {
return -EINVAL;
}
if (sys_get_be32(tcp_hdr->ack) != ctx->tcp->send_ack) {
sys_put_be32(ctx->tcp->send_ack, tcp_hdr->ack);
calc_chksum = true;
}
/* The data stream code always sets this flag, because
* existing stacks (Linux, anyway) seem to ignore data packets
* without a valid-but-already-transmitted ACK. But set it
* anyway if we know we need it just to sanify edge cases.
*/
if (ctx->tcp->sent_ack != ctx->tcp->send_ack &&
(tcp_hdr->flags & NET_TCP_ACK) == 0) {
tcp_hdr->flags |= NET_TCP_ACK;
calc_chksum = true;
}
if (calc_chksum) {
net_tcp_set_chksum(pkt, pkt->frags);
}
if (tcp_hdr->flags & NET_TCP_FIN) {
ctx->tcp->fin_sent = 1;
}
ctx->tcp->sent_ack = ctx->tcp->send_ack;
net_pkt_set_sent(pkt, true);
/* As we modified the header, we need to write it back.
*/
net_tcp_set_hdr(pkt, tcp_hdr);
/* We must have special handling for some network technologies that
* tweak the IP protocol headers during packet sending. This happens
* with Bluetooth and IEEE 802.15.4 which use IPv6 header compression
* (6lo) and alter the sent network packet. So in order to avoid any
* corruption of the original data buffer, we must copy the sent data.
* For Bluetooth, its fragmentation code will even mangle the data
* part of the message so we need to copy those too.
*/
if (is_6lo_technology(pkt)) {
struct net_pkt *new_pkt, *check_pkt;
int ret;
bool pkt_in_slist = false;
/*
* There are users of this function that don't add pkt to TCP
* sent_list. (See send_ack() in net_context.c) In these cases,
* we should avoid the extra 6lowpan specific buffer copy
* below.
*/
SYS_SLIST_FOR_EACH_CONTAINER(&ctx->tcp->sent_list,
check_pkt, sent_list) {
if (check_pkt == pkt) {
pkt_in_slist = true;
break;
}
}
if (pkt_in_slist) {
new_pkt = net_pkt_get_tx(ctx, ALLOC_TIMEOUT);
if (!new_pkt) {
return -ENOMEM;
}
memcpy(new_pkt, pkt, sizeof(struct net_pkt));
new_pkt->frags = net_pkt_copy_all(pkt, 0,
ALLOC_TIMEOUT);
if (!new_pkt->frags) {
net_pkt_unref(new_pkt);
return -ENOMEM;
}
NET_DBG("Copied %zu bytes from %p to %p",
net_pkt_get_len(new_pkt), pkt, new_pkt);
/* This function is called from net_context.c and if we
* return < 0, the caller will unref the original pkt.
* This would leak the new_pkt so remove it here.
*/
ret = net_send_data(new_pkt);
if (ret < 0) {
net_pkt_unref(new_pkt);
} else {
net_stats_update_tcp_seg_rexmit();
}
return ret;
}
}
return net_send_data(pkt);
}
static void restart_timer(struct net_tcp *tcp)
{
if (!sys_slist_is_empty(&tcp->sent_list)) {
tcp->flags |= NET_TCP_RETRYING;
tcp->retry_timeout_shift = 0;
k_timer_start(&tcp->retry_timer, retry_timeout(tcp), 0);
} else if (IS_ENABLED(CONFIG_NET_TCP_TIME_WAIT)) {
if (tcp->fin_sent && tcp->fin_rcvd) {
/* We know sent_list is empty, which means if
* fin_sent is true it must have been ACKd
*/
k_timer_start(&tcp->retry_timer, TIME_WAIT_MS, 0);
net_context_ref(tcp->context);
}
} else {
k_timer_stop(&tcp->retry_timer);
tcp->flags &= ~NET_TCP_RETRYING;
}
}
int net_tcp_send_data(struct net_context *context)
{
struct net_pkt *pkt;
/* For now, just send all queued data synchronously. Need to
* add window handling and retry/ACK logic.
*/
SYS_SLIST_FOR_EACH_CONTAINER(&context->tcp->sent_list, pkt, sent_list) {
if (!net_pkt_sent(pkt)) {
if (net_tcp_send_pkt(pkt) < 0 &&
!is_6lo_technology(pkt)) {
net_pkt_unref(pkt);
}
}
}
return 0;
}
void net_tcp_ack_received(struct net_context *ctx, u32_t ack)
{
struct net_tcp *tcp = ctx->tcp;
sys_slist_t *list = &ctx->tcp->sent_list;
sys_snode_t *head;
struct net_pkt *pkt;
u32_t seq;
bool valid_ack = false;
if (IS_ENABLED(CONFIG_NET_STATISTICS_TCP) &&
sys_slist_is_empty(list)) {
net_stats_update_tcp_seg_ackerr();
}
while (!sys_slist_is_empty(list)) {
struct net_tcp_hdr hdr, *tcp_hdr;
head = sys_slist_peek_head(list);
pkt = CONTAINER_OF(head, struct net_pkt, sent_list);
tcp_hdr = net_tcp_get_hdr(pkt, &hdr);
seq = sys_get_be32(tcp_hdr->seq) + net_pkt_appdatalen(pkt) - 1;
if (!net_tcp_seq_greater(ack, seq)) {
net_stats_update_tcp_seg_ackerr();
break;
}
if (tcp_hdr->flags & NET_TCP_FIN) {
enum net_tcp_state s = net_tcp_get_state(tcp);
if (s == NET_TCP_FIN_WAIT_1) {
net_tcp_change_state(tcp, NET_TCP_FIN_WAIT_2);
} else if (s == NET_TCP_CLOSING) {
net_tcp_change_state(tcp, NET_TCP_TIME_WAIT);
}
}
sys_slist_remove(list, NULL, head);
net_pkt_unref(pkt);
valid_ack = true;
}
if (valid_ack) {
/* Restart the timer on a valid inbound ACK. This
* isn't quite the same behavior as per-packet retry
* timers, but is close in practice (it starts retries
* one timer period after the connection "got stuck")
* and avoids the need to track per-packet timers or
* sent times.
*/
restart_timer(ctx->tcp);
/* And, if we had been retrying, mark all packets
* untransmitted and then resend them. The stalled
* pipe is uncorked again.
*/
if (ctx->tcp->flags & NET_TCP_RETRYING) {
struct net_pkt *pkt;
SYS_SLIST_FOR_EACH_CONTAINER(&ctx->tcp->sent_list, pkt,
sent_list) {
if (net_pkt_sent(pkt)) {
do_ref_if_needed(pkt);
net_pkt_set_sent(pkt, false);
}
}
net_tcp_send_data(ctx);
}
}
}
void net_tcp_init(void)
{
}
#if defined(CONFIG_NET_DEBUG_TCP)
static void validate_state_transition(enum net_tcp_state current,
enum net_tcp_state new)
{
static const u16_t valid_transitions[] = {
[NET_TCP_CLOSED] = 1 << NET_TCP_LISTEN |
1 << NET_TCP_SYN_SENT,
[NET_TCP_LISTEN] = 1 << NET_TCP_SYN_RCVD |
1 << NET_TCP_SYN_SENT,
[NET_TCP_SYN_RCVD] = 1 << NET_TCP_FIN_WAIT_1 |
1 << NET_TCP_ESTABLISHED |
1 << NET_TCP_LISTEN |
1 << NET_TCP_CLOSED,
[NET_TCP_SYN_SENT] = 1 << NET_TCP_CLOSED |
1 << NET_TCP_ESTABLISHED |
1 << NET_TCP_SYN_RCVD |
1 << NET_TCP_CLOSED,
[NET_TCP_ESTABLISHED] = 1 << NET_TCP_CLOSE_WAIT |
1 << NET_TCP_FIN_WAIT_1 |
1 << NET_TCP_CLOSED,
[NET_TCP_CLOSE_WAIT] = 1 << NET_TCP_LAST_ACK |
1 << NET_TCP_CLOSED,
[NET_TCP_LAST_ACK] = 1 << NET_TCP_CLOSED,
[NET_TCP_FIN_WAIT_1] = 1 << NET_TCP_CLOSING |
1 << NET_TCP_FIN_WAIT_2 |
1 << NET_TCP_TIME_WAIT |
1 << NET_TCP_CLOSED,
[NET_TCP_FIN_WAIT_2] = 1 << NET_TCP_TIME_WAIT |
1 << NET_TCP_CLOSED,
[NET_TCP_CLOSING] = 1 << NET_TCP_TIME_WAIT |
1 << NET_TCP_CLOSED,
[NET_TCP_TIME_WAIT] = 1 << NET_TCP_CLOSED
};
if (!(valid_transitions[current] & 1 << new)) {
NET_DBG("Invalid state transition: %s (%d) => %s (%d)",
net_tcp_state_str(current), current,
net_tcp_state_str(new), new);
}
}
#endif /* CONFIG_NET_DEBUG_TCP */
void net_tcp_change_state(struct net_tcp *tcp,
enum net_tcp_state new_state)
{
NET_ASSERT(tcp);
if (net_tcp_get_state(tcp) == new_state) {
return;
}
NET_ASSERT(new_state >= NET_TCP_CLOSED &&
new_state <= NET_TCP_CLOSING);
NET_DBG("state@%p %s (%d) => %s (%d)",
tcp, net_tcp_state_str(tcp->state), tcp->state,
net_tcp_state_str(new_state), new_state);
#if defined(CONFIG_NET_DEBUG_TCP)
validate_state_transition(tcp->state, new_state);
#endif /* CONFIG_NET_DEBUG_TCP */
tcp->state = new_state;
if (net_tcp_get_state(tcp) != NET_TCP_CLOSED) {
return;
}
if (!tcp->context) {
return;
}
/* Remove any port handlers if we are closing */
if (tcp->context->conn_handler) {
net_tcp_unregister(tcp->context->conn_handler);
tcp->context->conn_handler = NULL;
}
if (tcp->accept_cb) {
tcp->accept_cb(tcp->context,
&tcp->context->remote,
sizeof(struct sockaddr),
-ENETRESET,
tcp->context->user_data);
}
}
void net_tcp_foreach(net_tcp_cb_t cb, void *user_data)
{
int i, key;
key = irq_lock();
for (i = 0; i < NET_MAX_TCP_CONTEXT; i++) {
if (!net_tcp_is_used(&tcp_context[i])) {
continue;
}
irq_unlock(key);
cb(&tcp_context[i], user_data);
key = irq_lock();
}
irq_unlock(key);
}
bool net_tcp_validate_seq(struct net_tcp *tcp, struct net_pkt *pkt)
{
struct net_tcp_hdr hdr, *tcp_hdr;
tcp_hdr = net_tcp_get_hdr(pkt, &hdr);
if (!tcp_hdr) {
return false;
}
return (net_tcp_seq_cmp(sys_get_be32(tcp_hdr->seq),
tcp->send_ack) >= 0) &&
(net_tcp_seq_cmp(sys_get_be32(tcp_hdr->seq),
tcp->send_ack
+ net_tcp_get_recv_wnd(tcp)) < 0);
}
struct net_tcp_hdr *net_tcp_get_hdr(struct net_pkt *pkt,
struct net_tcp_hdr *hdr)
{
struct net_tcp_hdr *tcp_hdr;
struct net_buf *frag;
u16_t pos;
tcp_hdr = net_pkt_tcp_data(pkt);
if (net_tcp_header_fits(pkt, tcp_hdr)) {
return tcp_hdr;
}
frag = net_frag_read(pkt->frags, net_pkt_ip_hdr_len(pkt) +
net_pkt_ipv6_ext_len(pkt),
&pos, sizeof(hdr->src_port),
(u8_t *)&hdr->src_port);
frag = net_frag_read(frag, pos, &pos, sizeof(hdr->dst_port),
(u8_t *)&hdr->dst_port);
frag = net_frag_read(frag, pos, &pos, sizeof(hdr->seq), hdr->seq);
frag = net_frag_read(frag, pos, &pos, sizeof(hdr->ack), hdr->ack);
frag = net_frag_read_u8(frag, pos, &pos, &hdr->offset);
frag = net_frag_read_u8(frag, pos, &pos, &hdr->flags);
frag = net_frag_read(frag, pos, &pos, sizeof(hdr->wnd), hdr->wnd);
frag = net_frag_read(frag, pos, &pos, sizeof(hdr->chksum),
(u8_t *)&hdr->chksum);
frag = net_frag_read(frag, pos, &pos, sizeof(hdr->urg), hdr->urg);
if (!frag && pos == 0xffff) {
/* If the pkt is compressed, then this is the typical outcome
* so no use printing error in this case.
*/
if (IS_ENABLED(CONFIG_NET_DEBUG_TCP) &&
!is_6lo_technology(pkt)) {
NET_ASSERT(frag);
}
return NULL;
}
return hdr;
}
struct net_tcp_hdr *net_tcp_set_hdr(struct net_pkt *pkt,
struct net_tcp_hdr *hdr)
{
struct net_buf *frag;
u16_t pos;
if (net_tcp_header_fits(pkt, hdr)) {
return hdr;
}
frag = net_pkt_write(pkt, pkt->frags, net_pkt_ip_hdr_len(pkt) +
net_pkt_ipv6_ext_len(pkt),
&pos, sizeof(hdr->src_port),
(u8_t *)&hdr->src_port, ALLOC_TIMEOUT);
frag = net_pkt_write(pkt, frag, pos, &pos, sizeof(hdr->dst_port),
(u8_t *)&hdr->dst_port, ALLOC_TIMEOUT);
frag = net_pkt_write(pkt, frag, pos, &pos, sizeof(hdr->seq), hdr->seq,
ALLOC_TIMEOUT);
frag = net_pkt_write(pkt, frag, pos, &pos, sizeof(hdr->ack), hdr->ack,
ALLOC_TIMEOUT);
frag = net_pkt_write(pkt, frag, pos, &pos, sizeof(hdr->offset),
&hdr->offset, ALLOC_TIMEOUT);
frag = net_pkt_write(pkt, frag, pos, &pos, sizeof(hdr->flags),
&hdr->flags, ALLOC_TIMEOUT);
frag = net_pkt_write(pkt, frag, pos, &pos, sizeof(hdr->wnd), hdr->wnd,
ALLOC_TIMEOUT);
frag = net_pkt_write(pkt, frag, pos, &pos, sizeof(hdr->chksum),
(u8_t *)&hdr->chksum, ALLOC_TIMEOUT);
frag = net_pkt_write(pkt, frag, pos, &pos, sizeof(hdr->urg), hdr->urg,
ALLOC_TIMEOUT);
if (!frag) {
NET_ASSERT(frag);
return NULL;
}
return hdr;
}
u16_t net_tcp_get_chksum(struct net_pkt *pkt, struct net_buf *frag)
{
struct net_tcp_hdr *hdr;
u16_t chksum;
u16_t pos;
hdr = net_pkt_tcp_data(pkt);
if (net_tcp_header_fits(pkt, hdr)) {
return hdr->chksum;
}
frag = net_frag_read(frag,
net_pkt_ip_hdr_len(pkt) +
net_pkt_ipv6_ext_len(pkt) +
2 + 2 + 4 + 4 + /* src + dst + seq + ack */
1 + 1 + 2 /* offset + flags + wnd */,
&pos, sizeof(chksum), (u8_t *)&chksum);
NET_ASSERT(frag);
return chksum;
}
struct net_buf *net_tcp_set_chksum(struct net_pkt *pkt, struct net_buf *frag)
{
struct net_tcp_hdr *hdr;
u16_t chksum = 0;
u16_t pos;
hdr = net_pkt_tcp_data(pkt);
if (net_tcp_header_fits(pkt, hdr)) {
hdr->chksum = 0;
hdr->chksum = ~net_calc_chksum_tcp(pkt);
return frag;
}
/* We need to set the checksum to 0 first before the calc */
frag = net_pkt_write(pkt, frag,
net_pkt_ip_hdr_len(pkt) +
net_pkt_ipv6_ext_len(pkt) +
2 + 2 + 4 + 4 + /* src + dst + seq + ack */
1 + 1 + 2 /* offset + flags + wnd */,
&pos, sizeof(chksum), (u8_t *)&chksum,
ALLOC_TIMEOUT);
chksum = ~net_calc_chksum_tcp(pkt);
frag = net_pkt_write(pkt, frag, pos - 2, &pos, sizeof(chksum),
(u8_t *)&chksum, ALLOC_TIMEOUT);
NET_ASSERT(frag);
return frag;
}