zephyr/include/spi.h
Tomasz Bursztyka cced7fd47a api/spi: Change transceive functions signature
Instead of NULL terminated buffer arrays, let's add a parameter for each
that tells the number of spi_buf in it.

It adds a little bit more complexity in driver's side (spi_context.h)
but not on user side (bufer one has to take care of providing the NULL
pointer at the end of the array, now he requires to give the count).

This will saves a significant amount of bytes in more complex setup than
the current dumb spi driver sample.

Fix and Use size_t everywhere (spi_context.h was using u32_t).

Signed-off-by: Tomasz Bursztyka <tomasz.bursztyka@linux.intel.com>
2017-06-01 10:49:30 -04:00

412 lines
12 KiB
C

/*
* Copyright (c) 2015 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Public API for SPI drivers and applications
*/
#if defined(CONFIG_SPI_LEGACY_API)
/*
* This is the default, and will be the way until the new API below
* will be enforced everywhere.
*/
#include <spi_legacy.h>
#else
#ifndef __SPI_H__
#define __SPI_H__
/**
* @brief SPI Interface
* @defgroup spi_interface SPI Interface
* @ingroup io_interfaces
* @{
*/
#include <zephyr/types.h>
#include <stddef.h>
#include <device.h>
#ifdef __cplusplus
extern "C" {
#endif
/**x
* @brief SPI operational mode
*/
#define SPI_OP_MODE_MASTER 0
#define SPI_OP_MODE_SLAVE 1
/**
* @brief SPI Polarity & Phase Modes
*/
/**
* Clock Polarity: if set, clock idle state will be 1
* and active state will be 0. If untouched, the inverse will be true
* which is the default.
*/
#define SPI_MODE_CPOL BIT(1)
/**
* Clock Phase: this dictates when is the data captured, and depends
* clock's polarity. When SPI_MODE_CPOL is set and this bit as well,
* capture will occure on low to high transition and high to low if
* this bit is not set (default). This is fully reversed if CPOL is
* not set.
*/
#define SPI_MODE_CPHA BIT(2)
/**
* Whatever data is transmitted is looped-back to the receiving buffer of
* the controller. This is fully controller dependent as some may not
* support this, and can be used for testing purposes only.
*/
#define SPI_MODE_LOOP BIT(3)
#define SPI_MODE_MASK (0xE)
#define SPI_MODE_GET(_mode_) \
((_mode_) & SPI_MODE_MASK)
/**
* @brief SPI Transfer modes (host controller dependent)
*/
#define SPI_TRANSFER_MSB (0)
#define SPI_TRANSFER_LSB BIT(4)
/**
* @brief SPI word size
*/
#define SPI_WORD_SIZE_SHIFT (5)
#define SPI_WORD_SIZE_MASK (0x3F << SPI_WORD_SIZE_SHIFT)
#define SPI_WORD_SIZE_GET(_operation_) \
(((_operation_) & SPI_WORD_SIZE_MASK) >> SPI_WORD_SIZE_SHIFT)
#define SPI_WORD_SET(_word_size_) \
((_word_size_) << SPI_WORD_SIZE_SHIFT)
/**
* @brief SPI MISO lines
*
* Some controllers support dual or quad MISO lines connected to slaves.
* Default is single, which is the case most of the time.
*/
#define SPI_LINES_SINGLE (0)
#define SPI_LINES_DUAL BIT(11)
#define SPI_LINES_QUAD BIT(12)
#define SPI_LINES_MASK (0x3 << 11)
/**
* @brief Specific SPI devices control bits
*/
/* Requests - if possible - to keep CS asserted after the transaction */
#define SPI_HOLD_ON_CS BIT(13)
/* Keep the device locked after the transaction for the current config.
* Use this with extreme caution (see spi_release() below) as it will
* prevent other callers to access the SPI device until spi_release() is
* properly called.
*/
#define SPI_LOCK_ON BIT(14)
/* Select EEPROM read mode on master controller.
* If not supported by the controller, the driver will have to emulate
* the mode and thus should never return -EINVAL on that configuration)
*/
#define SPI_EEPROM_MODE BIT(15)
/**
* @brief SPI Chip Select control structure
*
* This can be used to control a CS line via a GPIO line, instead of
* using the controller inner CS logic.
*
* gpio_dev is a valid pointer to an actual GPIO device
* gpio_pin is a number representing the gpio PIN that will be used
* to act as a CS line
* delay is a delay in microseconds to wait before starting the
* transmission and before releasing the CS line
*/
struct spi_cs_control {
struct device *gpio_dev;
u32_t gpio_pin;
u32_t delay;
};
/**
* @brief SPI controller configuration structure
*
* dev is a valid pointer to an actual SPI device
* frequency is the bus frequency in Hertz
* operation is a bit field with the following parts:
* operational mode [ 0 ] - master or slave.
* mode [ 1 : 3 ] - Polarity, phase and loop mode.
* transfer [ 4 ] - LSB or MSB first.
* word_size [ 5 : 10 ] - Size of a data frame in bits.
* lines [ 11 : 12 ] - MISO lines: Single/Dual/Quad.
* cs_hold [ 13 ] - Hold on the CS line if possible.
* lock_on [ 14 ] - Keep ressource locked for the caller.
* eeprom [ 15 ] - EEPROM mode.
*
* slave is the slave number from 0 to host constoller slave limit.
*
* cs is a valid pointer on a struct spi_cs_control is CS line is
* emulated through a gpio line, or NULL otherwise.
*
* Note: cs_hold, lock_on and eeprom_rx can be changed between consecutive
* transceive call.
*/
struct spi_config {
struct device *dev;
u32_t frequency;
u16_t operation;
u16_t slave;
struct spi_cs_control *cs;
};
/**
* @brief SPI buffer structure
*
* buf is a valid pointer on a data buffer, or NULL otherwise.
* len is the length of the buffer or, if buf is NULL, will be the
* length which as to be sent as dummy bytes (as TX buffer) or
* the length of bytes that should be skipped (as RX buffer).
*/
struct spi_buf {
void *buf;
size_t len;
};
/**
* @typedef spi_api_io
* @brief Callback API for I/O
* See spi_transceive() for argument descriptions
*/
typedef int (*spi_api_io)(struct spi_config *config,
const struct spi_buf *tx_bufs,
size_t tx_count,
struct spi_buf *rx_bufs,
size_t rx_count);
/**
* @typedef spi_api_io
* @brief Callback API for asynchronous I/O
* See spi_transceive_async() for argument descriptions
*/
typedef int (*spi_api_io_async)(struct spi_config *config,
const struct spi_buf *tx_bufs,
size_t tx_count,
struct spi_buf *rx_bufs,
size_t rx_count,
struct k_poll_signal *async);
/**
* @typedef spi_api_release
* @brief Callback API for unlocking SPI device.
* See spi_release() for argument descriptions
*/
typedef int (*spi_api_release)(struct spi_config *config);
/**
* @brief SPI driver API
* This is the mandatory API any SPI driver needs to expose.
*/
struct spi_driver_api {
spi_api_io transceive;
#ifdef CONFIG_POLL
spi_api_io_async transceive_async;
#endif
spi_api_release release;
};
/**
* @brief Read/write the specified amount of data from the SPI driver.
*
* Note: This function is synchronous.
*
* @param config Pointer to a valid spi_config structure instance.
* @param tx_bufs Buffer array where data to be sent originates from,
* or NULL if none.
* @param tx_count Number of element in the tx_bufs array.
* @param rx_bufs Buffer array where data to be read will be written to,
* or NULL if none.
* @param rx_count Number of element in the rx_bufs array.
*
* @retval 0 If successful, negative errno code otherwise.
*/
static inline int spi_transceive(struct spi_config *config,
const struct spi_buf *tx_bufs,
size_t tx_count,
struct spi_buf *rx_bufs,
size_t rx_count)
{
const struct spi_driver_api *api = config->dev->driver_api;
return api->transceive(config, tx_bufs, tx_count, rx_bufs, rx_count);
}
/**
* @brief Read the specified amount of data from the SPI driver.
*
* Note: This function is synchronous.
*
* @param config Pointer to a valid spi_config structure instance.
* @param rx_bufs Buffer array where data to be read will be written to.
* @param rx_count Number of element in the rx_bufs array.
*
* @retval 0 If successful, negative errno code otherwise.
*/
static inline int spi_read(struct spi_config *config,
struct spi_buf *rx_bufs,
size_t rx_count)
{
const struct spi_driver_api *api = config->dev->driver_api;
return api->transceive(config, NULL, 0, rx_bufs, rx_count);
}
/**
* @brief Write the specified amount of data from the SPI driver.
*
* Note: This function is synchronous.
*
* @param config Pointer to a valid spi_config structure instance.
* @param tx_bufs Buffer array where data to be sent originates from.
* @param tx_count Number of element in the tx_bufs array.
*
* @retval 0 If successful, negative errno code otherwise.
*/
static inline int spi_write(struct spi_config *config,
const struct spi_buf *tx_bufs,
size_t tx_count)
{
const struct spi_driver_api *api = config->dev->driver_api;
return api->transceive(config, tx_bufs, tx_count, NULL, 0);
}
#ifdef CONFIG_POLL
/**
* @brief Read/write the specified amount of data from the SPI driver.
*
* Note: This function is asynchronous.
*
* @param config Pointer to a valid spi_config structure instance.
* @param tx_bufs Buffer array where data to be sent originates from,
* or NULL if none.
* @param tx_count Number of element in the tx_bufs array.
* @param rx_bufs Buffer array where data to be read will be written to,
* or NULL if none.
* @param rx_count Number of element in the rx_bufs array.
* @param async A pointer to a valid and ready to be signaled
* struct k_poll_signal. (Note: if NULL this function will not
* notify the end of the transaction, and whether it went
* successfully or not).
*
* @retval 0 If successful, negative errno code otherwise.
*/
static inline int spi_transceive_async(struct spi_config *config,
const struct spi_buf *tx_bufs,
size_t tx_count,
struct spi_buf *rx_bufs,
size_t rx_count,
struct k_poll_signal *async)
{
const struct spi_driver_api *api = config->dev->driver_api;
return api->transceive_async(config, tx_bufs, tx_count,
rx_bufs, rx_count, async);
}
/**
* @brief Read the specified amount of data from the SPI driver.
*
* Note: This function is asynchronous.
*
* @param config Pointer to a valid spi_config structure instance.
* @param rx_bufs Buffer array where data to be read will be written to.
* @param rx_count Number of element in the rx_bufs array.
* @param async A pointer to a valid and ready to be signaled
* struct k_poll_signal. (Note: if NULL this function will not
* notify the end of the transaction, and whether it went
* successfully or not).
*
* @retval 0 If successful, negative errno code otherwise.
*/
static inline int spi_read_async(struct spi_config *config,
struct spi_buf *rx_bufs,
size_t rx_count,
struct k_poll_signal *async)
{
const struct spi_driver_api *api = config->dev->driver_api;
return api->transceive_async(config, NULL, 0,
rx_bufs, rx_count, async);
}
/**
* @brief Write the specified amount of data from the SPI driver.
*
* Note: This function is asynchronous.
*
* @param config Pointer to a valid spi_config structure instance.
* @param tx_bufs Buffer array where data to be sent originates from.
* @param tx_count Number of element in the tx_bufs array.
* @param async A pointer to a valid and ready to be signaled
* struct k_poll_signal. (Note: if NULL this function will not
* notify the end of the transaction, and whether it went
* successfully or not).
*
* @retval 0 If successful, negative errno code otherwise.
*/
static inline int spi_write_async(struct spi_config *config,
const struct spi_buf *tx_bufs,
size_t tx_count,
struct k_poll_signal *async)
{
const struct spi_driver_api *api = config->dev->driver_api;
return api->transceive_async(config, tx_bufs, tx_count,
NULL, 0, async);
}
#endif /* CONFIG_POLL */
/**
* @brief Release the SPI device locked on by the current config
*
* Note: This synchronous function is used to release the lock on the SPI
* device that was kept if, and if only, given config parameter was
* the last one to be used (in any of the above functions) and if
* it has the SPI_LOCK_ON bit set into its operation bits field.
* This can be used if the caller needs to keep its hand on the SPI
* device for consecutive transactions.
*
* @param config Pointer to a valid spi_config structure instance.
*/
static inline int spi_release(struct spi_config *config)
{
const struct spi_driver_api *api = config->dev->driver_api;
return api->release(config);
}
#ifdef __cplusplus
}
#endif
/**
* @}
*/
#endif /* __SPI_H__ */
#endif /* CONFIG_SPI_LEGACY_API */